• Lindsey Blanchard posted an update 1 week, 5 days ago

    Dental pulp stem cells are a type of adult stem cells with strong proliferative ability and multi-differentiation potential. CAY10683 datasheet There are no studies on treatment of vascular dementia with dental pulp stem cells. In the present study, rat models of vascular dementia were established by two-vessel occlusion, and 30 days later, rats were injected with 2 × 107 dental pulp stem cells via the tail vein. At 70 days after vascular dementia induction, dental pulp stem cells had migrated to the brain tissue of rat vascular dementia models and differentiated into neuron-like cells. At the same time, doublecortin, neurofilament 200, and NeuN mRNA and protein expression levels in the brain tissue were increased, and glial fibrillary acidic protein mRNA and protein expression levels were decreased. Behavioral testing also revealed that dental pulp stem cell transplantation improved the cognitive function of rat vascular dementia models. These findings suggest that dental pulp stem cell transplantation is effective in treating vascular dementia possibly through a paracrine mechanism. The study was approved by the Animal Ethics Committee of Harbin Medical University (approval No. KY2017-132) in 2017.Cell transplantation is a potential treatment for spinal cord injury. Olfactory ensheathing cells (OECs) play an active role in the repair of spinal cord injury as a result of the dual characteristics of astrocytes and Schwann cells. However, the specific mechanisms of repair remain poorly understood. In the present study, a rat model of spinal cord injury was established by transection of T10. OECs were injected into the site, 1 mm from the spinal cord stump. To a certain extent, OEC transplantation restored locomotor function in the hindlimbs of rats with spinal cord injury, but had no effect on the formation or volume of glial scars. In addition, OEC transplantation reduced the immunopositivity of chondroitin sulfate proteoglycans (neural/glial antigen 2 and neurocan) and glial fibrillary acidic protein at the injury site, and increased the immunopositivity of growth-associated protein 43 and neurofilament. These findings suggest that OEC transplantation can regulate the expression of chondroitin sulfate proteoglycans in the spinal cord, inhibit scar formation caused by the excessive proliferation of glial cells, and increase the numbers of regenerated nerve fibers, thus promoting axonal regeneration after spinal cord injury. The study was approved by the Animal Ethics Committee of the Medical College of Xi’an Jiaotong University, China (approval No. 2018-2048) on September 9, 2018.There are two types of cell death-apoptosis and necrosis. Apoptosis is cell death regulated by cell signaling pathways, while necrosis has until recently been considered a passive mechanism of cell death caused by environmental pressures. However, recent studies show that necrosis can also be regulated by specific cell signaling pathways. This mode of death, termed necroptosis, has been found to be related to the occurrence and development of many diseases. We used bibliometrics to analyze the global output of literature on necroptosis in the field of neuroscience published in the period 2007-2019 to identify research hotspots and prospects. We included 145 necroptosis-related publications and 2239 references published in the Web of Science during 2007-2019. Visualization analysis revealed that the number of publications related to necroptosis has increased year by year, reaching a peak in 2019. China is the country with the largest number of publications. Key word and literature analyses demonstrated that mitochondrial function change, stroke, ischemia/reperfusion and neuroinflammation are likely the research hotspots and future directions of necroptosis research in the nervous system. The relationship between immune response-related factors, damage-associated molecular patterns, pathogen-associated molecular patterns and necroptosis may become a potential research hotspot in the future. Taken together, our findings suggest that although the inherent limitations of bibliometrics may affect the accuracy of the literature-based prediction of research hotspots, the results obtained from the included publications can provide a reference for the study of necroptosis in the field of neuroscience.Peripheral nerves have a limited capacity for self-repair and those that are severely damaged or have significant defects are challenging to repair. Investigating the pathophysiology of peripheral nerve repair is important for the clinical treatment of peripheral nerve repair and regeneration. In this study, rat models of right sciatic nerve injury were established by a clamping method. Protein chip assay was performed to quantify the levels of neurotrophic, inflammation-related, chemotaxis-related and cell generation-related factors in the sciatic nerve within 7 days after injury. The results revealed that the expression levels of neurotrophic factors (ciliary neurotrophic factor) and inflammation-related factors (intercellular cell adhesion molecule-1, interferon γ, interleukin-1α, interleukin-2, interleukin-4, interleukin-6, monocyte chemoattractant protein-1, prolactin R, receptor of advanced glycation end products and tumor necrosis factor-α), chemotaxis-related factors (cytokine-induced neutrophil chemoattractant-1, L-selectin and platelet-derived growth factor-AA) and cell generation-related factors (granulocyte-macrophage colony-stimulating factor) followed different trajectories. These findings will help clarify the pathophysiology of sciatic nerve injury repair and develop clinical treatments of peripheral nerve injury. This study was approved by the Ethics Committee of Peking University People’s Hospital of China (approval No. 2015-50) on December 9, 2015.It was hypothesized that mesenchymal stem cells (MSCs) could provide necessary trophic factors when seeded onto the surfaces of commonly used nerve graft substitutes. We aimed to determine the gene expression of MSCs when influenced by Avance® Nerve Grafts or NeuraGen® Nerve Guides. Human adipose-derived MSCs were cultured and dynamically seeded onto 30 Avance® Nerve Grafts and 30 NeuraGen® Nerve Guides for 12 hours. At six time points after seeding, quantitative polymerase chain reaction analyses were performed for five samples per group. Neurotrophic [nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), pleiotrophin (PTN), growth associated protein 43 (GAP43) and brain-derived neurotrophic factor (BDNF)], myelination [peripheral myelin protein 22 (PMP22) and myelin protein zero (MPZ)], angiogenic [platelet endothelial cell adhesion molecule 1 (PECAM1/CD31) and vascular endothelial cell growth factor alpha (VEGFA)], extracellular matrix (ECM) [collagen type alpha I (COL1A1), collagen type alpha III (COL3A1), Fibulin 1 (FBLN1) and laminin subunit beta 2 (LAMB2)] and cell surface marker cluster of differentiation 96 (CD96) gene expression was quantified.