• Carstensen Benton posted an update 1 week, 3 days ago

    Exposure to high concentrations of ammonia (NH3) can cause life-threatening lung damages. The objective of this study was to establish a translational in vitro model for NH3-induced lung injury. Precision-cut lung slices (PCLS) from rats were exposed to NH3 and toxicological responses and cell viability were quantified by analysis of LDH, WST-1, inflammatory mediators (IL-1β, IL-6, CINC-1, MMP-9, RAGE and IL-18), and by microscopic evaluation of bronchoconstriction induced by electric-field-stimulation (EFS) or methacholine (MCh). Different treatment strategies were assessed to prevent or reverse the damages caused by NH3 using anti-inflammatory, anti-oxidant or neurologically active drugs. Exposure to NH3 caused a concentration-dependent increase in cytotoxicity (LDH/WST-1) and IL-1β release in PCLS medium. None of the treatments reduced cytotoxicity. Deposition of NH3 (24-59 mM) on untreated PCLS elicited an immediate concentration-dependent bronchoconstriction. Unlike MCh, the EFS method did not constrict the airways in PCLS at 5 h after NH3-exposure (47-59 mM). Atropine and TRP-channel antagonists blocked EFS-induced bronchoconstriction but these inhibitors could not block the immediate NH3-induced bronchoconstriction. In conclusion, NH3 exposure caused cytotoxic effects and lung damages in a concentration-dependent manner and this PCLS method offers a way to identify and test new concepts of medical treatments and biomarkers that may be of prognostic value.Previously, we reported that prolonged arsenic exposure impaired neuronal insulin signaling. Here we have further identified novel molecular mechanisms underlying neuronal insulin signaling impairment by arsenic. Arsenic treatment altered insulin dose-response curve and reduced maximum insulin response in differentiated human neuroblastoma SH-SY5Y cells, suggesting that arsenic hindered neuronal insulin signaling in a non-competitive like manner. Mechanistically, arsenic suppressed insulin receptor (IR) kinase activity, as witnessed by a decreased insulin-activated autophosphorylation of IR at Y1150/1151. Arsenic decreased the level of insulin receptor substrate 1 (IRS1) but increased the protein ratio between PI3K regulatory subunit, p85, and PI3K catalytic subunit, p110. Interestingly, co-immunoprecipitation demonstrated that arsenic did not alter a level of PI3K-p110/PI3K-p85 complex while increased PI3K-p85 levels in a PI3K-p110 depletion supernatant resulted from PI3K-p110 immunoprecipitation. These results indicated that arsenic increased PI3K-p85 which was free from PI3K-p110 binding. click here In addition, arsenic significantly increased interaction between IRS1 and PI3K-p85 but not PI3K-p110, suggesting that there may be a fraction of free PI3K-p85 interacting with IRS1. In vitro PI3K activity demonstrated that arsenic lowered PI3K activity in both basal and insulin-stimulated conditions. These results suggested that the increase in free PI3K-p85 by arsenic might compete with PI3K heterodimer for the same IRS1 binding site, in turn blocking the activation of its catalytic subunit, PI3K-p110. Taken together, our results provide additional insights into mechanisms underlying the impairment of neuronal insulin signaling by arsenic through the reduction of IR autophosphorylation, the increase in free PI3K-p85, and the impeding of PI3K activity.Cortical hyperexcitability is an early and intrinsic feature of both sporadic and familial forms of amyotrophic lateral sclerosis (ALS).. Importantly, cortical hyperexcitability appears to be associated with motor neuron degeneration, possibly via an anterograde glutamate-mediated excitotoxic process, thereby forming a pathogenic basis for ALS. The presence of cortical hyperexcitability in ALS patients may be readily determined by transcranial magnetic stimulation (TMS), a neurophysiological tool that provides a non-invasive and painless method for assessing cortical function. Utilising the threshold tracking TMS technique, cortical hyperexcitability has been established as a robust diagnostic biomarker that distinguished ALS from mimicking disorders at early stages of the disease process. The present review discusses the pathophysiological and diagnostic utility of cortical hyperexcitability in ALS.Neuroinflammation induced by microglial activation has a critical role in inflammatory pain. In this study, we detected the function of miR-216a-5p in the progression of inflammatory behavioral hypersensitivity. Here, decreases of miR-216a-5p and up-regulation of high-mobility group box1 (HMGB1) were observed in complete freund’s adjuvant (CFA)-induced inflammatory pain model in mice and LSP-activated BV2 microglia. HMGB1 was identified as a target of miR-216a-5p by luciferase reporter system. Ectopic expression of miR-216a-5p suppressed microglial marker IBA-1 expression and subsequent pro-inflammatory cytokine releases (IL-1β, IL-6 and TNF-α) from LPS-activated microglia. Additionally, LPS exposure enhanced the protein expression levels of HMGB1, TLR4 and p-p65 NF-kB in microglia, which were abrogated following miR-216a-5p overexpression. Intriguingly, transfection of HMGN1 cDNA into BV2 microglial cells reversed the inhibitory effects of miR-216a-5p elevation on microglial activation-triggered inflammatory response. Intrathecal delivery of LV-miR-216a-5-p ameliorated CFA-evoked mechanical and thermal hyperalgesia in mice. Concomitantly, overexpressing miR-216a-5p also restrained the inflammatory response and microglia activation in CFA-induced inflammatory mouse models, concomitant with the decreases in the expression of HMGB1, TLR4 and p-p65 NF-kB in spinal cord. Thus, these findings highlight that miR-216a-5p may alleviate inflammatory behavioral hypersensitivity by blocking microglia-mediated neuroinflammation via targeting the HMGB1-TLR4-NF-kB pathway, supporting miR-216a-5p as a potential therapeutic avenue for inflammatory pain.Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterized by the loss of upper and lower motor neurons. In general, patients succumb to respiratory insufficiency due to respiratory muscle weakness. Despite many promising therapeutic strategies primarily identified in rodent models, patient trials remain rather unsuccessful. There is a clear need for alternative approaches, which could provide directions towards the justified use of rodents and which increase the likelihood to identify new promising clinical candidates. In the last decades, the use of fast genetic approaches and the development of high-throughput screening platforms in the nematode Caenorhabditis elegans, in the fruit fly (Drosophila melanogaster) and in zebrafish (Danio rerio) have contributed to new insights into ALS pathomechanisms, disease modifiers and therapeutic targets. In this mini-review, we provide an overview of these alternative small animal studies, modeling the most common ALS genes and discuss the most recent preclinical discoveries.