• Knowles Kilgore posted an update 1 week, 3 days ago

    Over 21,000 women are diagnosed with ovarian cancer (OC) in the United States each year and over half that number succumb to this disease annually, often due to recurrent disease. A deeper understanding of the molecular events associated with recurrent disease is needed to identify potential targets. Using genome-scale DNA methylation and gene expression data for 16 matched primary-recurrent advanced stage serous epithelial OCs, we discovered that Claudin-1 (CLDN1), a tight junction protein, shows a stronger correlation between expression and methylation in recurrent versus primary OC at multiple CpG sites (R= -0.47 to -0.64 versus R= -0.32 to -0.57, respectively). An independent dataset showed that this correlation is stronger in tumors from short-term (7y) survivors (R= -0.41 to -0.46 versus R= 0.06 to -0.19, respectively). The presence of this inverse correlation in short-term survivors and recurrent tumors suggests an important role for this relationship and potential predictive value for disease prognosis. CLDN1 expression increased following pharmacologic inhibition of DNA methyltransferase activity (p less then 0.001), thus validating the role of methylation in CLDN1 gene inhibition. CLDN1 knockdown enhanced chemosensitivity and suppressed cell proliferation, migration, and wound healing (p less then 0.05). Stable CLDN1 knockdown in vivo resulted in reduced xenograft tumor growth but did not reach significance. Our results indicate that the relationship between CLDN1 methylation and expression plays an important role in OC aggressiveness and recurrence.Because of the modest response rate after surgery and chemotherapy, treatment of osteosarcoma (OS) remains challenging due to tumor recurrence and metastasis. miR-135a has been reported to act as an anticarcinogenic regulator of several cancers. B102 HDAC inhibitor However, its expression and function in osteosarcoma remain largely unknown. Here, we reported that abridged miR-135a expression in OS cells and tissues, and its expression is inversely correlated with the expression of BMI1 and KLF4, which are described as oncogenes in several cancers. Ectopic expression of miR-135a inhibited cell invasion and expression of BMI1 and KLF4 in OS cells. In vivo investigation confirmed that miR-135a acts as a tumor suppressor in OS to inhibit tumor growth and lung metastasis in xenograft nude mice. BMI1 and KLF4 were revealed to be direct targets of miR-135a, and miR-135a had a similar effect as the combination of si-BMI1 and si-KLF4 on inhibiting tumor progression and the expression of BMI1 and KLF4 in vivo. Altogether, our results demonstrate that the targeting of BMI1/KLF4 with miR-135a may provide an applicable strategy for exploring novel therapeutic approaches for OS.Patients affected with gliomas develop a complex set of clinical manifestations that deeply impact on quality of life and overall survival. Brain tumor-related epilepsy is frequently the first manifestation of gliomas or may occur during the course of disease; the underlying mechanisms have not been fully explained and depend on both patient and tumor factors. Novel treatment options derive from the growing use of third-generation antiepileptic drugs. Vasogenic edema and elevated intracranial pressure cause a considerable burden of symptoms, especially in high-grade glioma, requiring an adequate use of corticosteroids. Patients with gliomas present with an elevated risk of tumor-associated venous thromboembolism whose prophylaxis and treatment are challenging, considering also the availability of new oral anticoagulant drugs. Moreover, intracerebral hemorrhages can complicate the course of the illness both due to tumor-specific characteristics, patient comorbidities, and side effects of antithrombotic and antitumoral therapies. This paper aims to review recent advances in these clinical issues, discussing the medical management of gliomas through an updated literature review.About 20-30 percent of patients with cancer, such as non-small cell lung cancer, breast cancer, melanoma and renal cell carcinoma, will develop brain metastases (BM). Primary and secondary brain tumors are often accompanied by peritumoral edema. Due to the limited intracranial space, peritumoral edema will further increase the intracranial pressure and aggravate clinical symptoms. Radiotherapy, as a basic component of the treatment of intracranial tumors, induces blood vessel damage and aggravates brain edema. The combination of edema caused by the tumor itself and radiotherapy is collectively referred to as intractable brain edema. Edema can increase intracranial pressure and cause associated neurologic symptoms, which seriously affects the quality of life of patients. Steroids, specifically dexamethasone, have become the gold standard for the management of tumor-associated edema. However, steroids can lead to variety of adverse effects, including moon face, high blood pressure, high blood sugar, increased risk of infection, bone thinning (osteoporosis), and fractures, especially with prolonged use. The investigation of other types of drugs is urgently needed to address this problem.Compared to other anti-angiogenic agents, anlotinib acts on vascular endothelial growth factor receptors (VEGFR1, VEGFR2/KDR, and VEGFR3), fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3 and FGFR4), platelet derived growth factor receptor (PDGFR) and stem cell factor receptor (c-kit) simultaneously. However, according to the literature retrieval, there are no studies on anlotinib for the treatment of intractable brain edema. We describe here two cases of brain edema and review the literature available and hope to discover new agents that are safer and more effective.No published studies have prospectively evaluated the association between urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels and lung cancer risk in the general population. Here, we conducted a prospective community-based cohort study in the Republic of Korea to evaluate the relationship between urinary NNAL levels and lung cancer risk using prediagnostic urine samples. This prospective cohort study was based on the Korean National Cancer Center Community Cohort. During the follow-up period, 173 primary lung cancer cases were identified. Total urinary NNAL levels were measured by liquid chromatography-tandem mass spectrometry, and data were analyzed using multivariable Cox proportional hazards regression models. The risk of lung cancer was significantly increased per unit of natural log-transformed urinary NNAL (HR, 1.27; 95% CI, 1.09-1.48), after adjusting for age, region, entry year into the cohort, education achievement, alcohol consumption status, BMI, smoking status, and urinary cotinine levels.