• Finnegan Spears posted an update 1 week, 2 days ago

    This work would provide guidelines for target design of bio-based materials with tunable porous structure and versatile adsorption or catalytic sites for various applications.A column granular electrode loaded with metallic cobalt was prepared using powder activated carbon (namely Co/AC) and used in a continuous electrochemical reactor to degrade humic acid (HA). The results of XRD indicated that the form of catalyst prepared at 600 °C for 4 h mainly consisted of Co0, whereas it consisted of CoO when prepared at 450-500 °C for 4 h. The Co0 possessed better catalytic effects in the degradation of HA than CoO. When C0 of HA was 200 mg L-1, the C/C0 approached 0.06-0.12 under 0.1 A, pH of 7.0, 0.01 M Na2SO4, and 20 min of hydraulic retention time (HRT). The current, HRT, initial pH, electrolyte type and concentration influenced the degradation of HA. The ESR signals indicated that both H∗ and OH were catalytically generated by Co/AC electrode. Compared to AC electrodes, the Co/AC electrodes showed a faster reaction Tafel slope (68 mV dec-1) and larger electrochemical double-layer capacitance (Cdl = 1.93 mF cm-2). The degradation and removal of HA was achieved by both the electro-oxidation and electro-reduction in the Co/AC electrode system.An Fe0-participated O3/H2O2 (Fe0-O3/H2O2) process was applied to remove refractory organic matter (OM) in semi-aerobic aged refuse biofilter (SAARB) leachate arising from treating mature landfill leachate. The degradation and transformation characteristics of refractory OM were revealed at molecular level. Removal efficiencies of aromatic substances were 63.55% by the Fe0-O3/H2O2 process (much higher than in other single or binary processes), and fulvic- and humic-like substances were more effectively degraded by this process than by other treatments. According to Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS), 6645 categories of OM in SAARB leachate were identified. Although there was little difference in number of OM categories after treatment using the single-O3 and Fe0-O3/H2O2 processes, Fe0-O3/H2O2 process can better reduce OM relative abundance. It is noteworthy that the Fe0-O3/H2O2 process more effectively degraded CHONS compounds than the single-O3 process, while also producing more CHO compounds having higher bio-availability. The enhanced degradation efficiency of the Fe0-O3/H2O2 process were attributed to the formation of the Fenton process initiated by leached Fe2+ and H2O2. The heterogeneous catalytic effect from iron (hydro) oxides for O3/H2O2 also increased the treatment capacity of the Fe0-O3/H2O2 process, resulting in better total organic carbon removal. The Fe0-O3/H2O2 process is an efficient method for removing refractory OM in SAARB leachate.The purification efficiency of the contaminants in the process of photocatalysis is influenced by the co-function of catalytic activity of materials, aquatic environment conditions and characteristics of transmission light. Here, tetracycline hydrochloride (TC-HCl) was introduced as the target pollutant, and the effects of different depths and TC-HCl concentrations on the transmission light intensity and spectral distribution were explored. The results show that incident light decreases with the increase of depth and pollutant concentration. The increase of depth influences the irradiance greatly, however, increase of concentration mainly lead to the narrow of transmission spectral range in the underwater field. The coupling relationship among pollutants, transmission spectral characteristics and photocatalytic reaction efficiency was discussed. Results show that the reduction of the underwater spectral range will reduce the effective response area of the material significantly, which directly leads to the reduction of pollutant removal efficiency in the degradation process. Aiming at different aquatic environment, photocatalytic materials with appropriate response spectral range should be selected to improve the light absorption ability, so that the removal efficiency can be improved significantly.Natural occurring metal-tolerant microbial population have replaced conventional expensive metal remediation approach since the last few years. The present study focuses on investigating the potential of a copper-tolerant plant growth promoting rhizobacterial strain Brevundimonas diminuta MYS6 for Cu bioremediation, plant growth promotion and Cu uptake in Helianthus annuus L. Box-Behnken Design of response surface methodology optimized the influencing parameters such as pH, temperature and Cu concentration. At optimized conditions of pH (5), temperature (32.5 °C) and Cu concentration (250 mg/L), the rhizobacteria followed a sigmoid growth curve pattern with maximum Cu removal of 94.8% in the stationary phase of growth. Cu exposed Brevundimonas diminuta MYS6 produced increased EPS (18.6%), indicating their role in internal defence against Cu stress. JNK inhibitor The FTIR analysis suggested the role of carboxylic acids, alcohols and aliphatic amine groups in Cu bioremoval. Furthermore, the results of pot experiments conducted with Helianthus annuus L. var. CO4 and Brevundimonas diminuta MYS6 showed enhanced plant growth and Cu uptake. The rhizobacteria increased root and shoot length, fresh and dry plant biomass and leaf chlorophyll by 1.5, 1.7, 9.9, 15.8 and 2.1 fold. The plant biomass mediate enhanced Cu uptake in roots and shoots was found to be 2.98 and 4.1 folds higher when compared to non-inoculated treatment. Henceforth the results of the study evidence the rhizobacterial strain Brevundimonas diminuta MYS6 as an efficient bio-inoculant for copper remediation.Application of activated peroxymonosulfate (PMS) to generate sulfate radical or hydroxyl radical is a promising strategy for wastewater treatment, while our knowledge on the background reaction, namely, the direct interaction between PMS and target contaminants is quite limited. In this contribution, the degradation kinetics, stoichiometry, products and mechanism of the reaction between unactivated PMS and trimethoprim (TMP), one of the most commonly detected micro-pollutants in the aquatic system were investigated systematically. The results indicated that TMP was susceptible to degradation by direct PMS oxidation via a non-radical process. By recording the decay of two reactants simultaneously, the stoichiometric ratio between PMS and TMP was estimated to be approximately 1. Higher PMS levels exhibited a promotion effect on PMS decay. And the degradation was pH-dependent, basic conditions were favorable for TMP degradation, which could be well modeled based on the species-specific reactions. The two amine groups on the pyrimidine ring were identified as the reactive sites. After direct attacks by PMS, they would be oxidized to form hydroxylamine-products, namely, N8-OH-TMP and N9-OH-TMP. These two hydroxylamine-products were quite stable and resistant to further oxidation by PMS, preventing the formation of more toxic nitroso- and nitro-products. The new findings in the present work would provide beneficial information on the strategy choice for the elimination of specific pollutants, like TMP, as PMS also exhibits relatively high reactivity towards them.The interfacial tracer test (ITT) conducted via aqueous miscible-displacement column experiments is one of a few methods available to measure air-water interfacial areas for porous media. The primary objective of this study was to examine the robustness of air-water interfacial area measurements obtained with interfacial tracer tests, and to examine the overall validity of the method. The potential occurrence and impact of surfactant-induced flow was investigated, as was measurement replication. The column and the effluent samples were weighed during the tests to monitor for potential changes in water saturation and flux. Minimal changes in water saturation and flux were observed for experiments wherein steady flow conditions were maintained using a vacuum-chamber system. The air-water interfacial areas measured with the miscible-displacement method completely matched interfacial areas measured with methods that are not influenced by surfactant-induced flow. This successful benchmarking was observed for all three media tested, and over a range of saturations. A mathematical model explicitly accounting for nonlinear and rate-limited adsorption of surfactant at the solid-water and air-water interfaces as well as the influence of changes in surface tension on matric potentials and flow was used to simulate the tracer tests. The independently-predicted simulations provided excellent matches to the measured data, and revealed that the use of the vacuum system minimized the occurrence of surfactant-induced flow and its associated effects. These results in total unequivocally demonstrate that the miscible-displacement ITT method produced accurate and robust measurements of air-water interfacial area under the extant conditions.Heavy metal contamination of the aquatic environment is of worldwide concern, due to the toxicity of metals and their lethal effects on aquatic organisms. The investigation of heavy metal concentrations in freshwater bodies has increased over the last decades in Greece; however, most studies have been sporadic and spatially limited. An overall assessment of the heavy metal contamination status in Greek surface water bodies is lacking. In this review, all available published data from 1999 to 2019 were collected and analysed to assess the heavy metal contamination status of the surface water bodies of Greece. Data were available for 68 water bodies and several pollution indices (e.g. Heavy Metal Pollution index, Geoaccumulation index, Moderated Pollution Index) were calculated to evaluate their surface water quality. Overall, heavy metal concentrations in water samples were below the Environmental Quality Standards (EQS) and the vast majority of water bodies were classified as good quality based on surface water pollution indices. Sediment heavy metal concentrations exceeding the Sediment Quality Guidelines (SQGs) were detected in most water bodies. Rivers Axios, Evros, Louros, Gallikos, Greveniotikos, Palea Kavala, Kompsatos, Alfeios and Evrotas, and lakes Pamvotis, Doirani and Koumoundourou were either moderately or highly contaminated. Up to date, heavy metal pollution indices used worldwide for surface waters refer to potable water. Thus, pollution indices must be developed for assessing primarily the ecological consequences of heavy metal pollution and surface water pollution status. Finally, sediment pollution guidelines must be suggested at a European or regional level.Reproductive behaviors are tightly regulated by sex steroid hormones. Interference with these hormones or their neural signaling pathways leads to behavioral alterations. We have previously shown that oral exposure of adult male mice to di(2-ethylhexyl) phthalate (DEHP), an organic environmental endocrine disruptor, altered sexual behavior. In this study, we examined the effects of pubertal exposure to DEHP and analyzed whether pubertal and adult exposures to DEHP trigger long-term effects. For pubertal exposure, male mice were exposed orally to the vehicle or DEHP at 5 or 50 μg/kg/d from postnatal day (PND) 30 to PND60. Exposure was arrested and animals were analyzed on PND120. They exhibited normal olfactory preference but showed modified emission of ultrasonic vocalizations. DEHP exposure also affected partner preference and mating components. These modifications were associated with normal circulating testosterone levels and weight of androgen-sensitive tissues. In contrast, androgen receptor (AR) protein amount was reduced in the hypothalamic preoptic area in particular for the DEHP-50 group.