-
Thomsen Cormier posted an update 1 week, 2 days ago
In this chapter, we summarize the studies that re-engineered the cdECM to examine the features of native ECM in-depth and to increase physiological relevancy. © 2020 Elsevier Inc. Setanaxib datasheet All rights reserved.Cell migration is involved in key phenomena in biology, ranging from development to cancer. Fibroblasts move between organs in 3D polymeric networks. So far, motile cells were mainly tracked in vitro on Petri dishes or on coverslips, i.e., 2D flat surfaces, which made the extrapolation to 3D physiological environments difficult. We therefore prepared 3D Cell Derived Matrices (CDM) with specific characteristics with the goal of extracting the main readouts required to measure and characterize cell motion cell specific matrix deformation through the tracking of fluorescent fibronectin within CDM, focal contacts as the cell anchor and acto-myosin cytoskeleton which applies cellular forces. We report our method for generating this assay of physiological-like gel with relevant readouts together with its potential impact in explaining cell motility in vivo. © 2020 Elsevier Inc. All rights reserved.The composition and architecture of the extracellular matrix (ECM) and their dynamic alterations, play an important regulatory role on numerous cellular processes. Cells embedded in 3D scaffolds show phenotypes and morphodynamics reminiscent of the native scenario. This is in contrast to flat environments, where cells display artificial phenotypes. The structural and biomolecular properties of the ECM are critical in regulating cell behavior via mechanical, chemical and topological cues, which induce cytoskeleton rearrangement and gene expression. Indeed, distinct ECM architectures are encountered in the native stroma, which depend on tissue type and function. For instance, anisotropic geometries are associated with ECM degradation and remodeling during tumor progression, favoring tumor cell invasion. Overall, the development of innovative in vitro ECM models of the ECM that reproduce the structural and physicochemical properties of the native scenario is of upmost importance to investigate the mechanistic determinants of tumor dissemination. In this chapter, we describe an extremely versatile technique to engineer three-dimensional (3D) matrices with controlled architectures for the study of pathophysiological processes in vitro. To this aim, a confluent culture of “sacrificial” fibroblasts was seeded on top of microfabricated guiding templates to induce the 3D ECM growth with specific isotropic or anisotropic architectures. The resulting matrices, and cells seeded on them, recapitulated the structure, composition, phenotypes and morphodynamics typically found in the native scenario. Overall, this method paves the way for the development of in vitro ECMs for pathophysiological studies with potential clinical relevance. © 2020 Elsevier Inc. All rights reserved.Bone is a composite material consisting primarily of cells, extracellular matrices, accessory proteins and the complex calcium phosphate salt hydroxyapatite. Collectively, the extracellular network of proteins and accessory molecules that provide the organic component of bone tissue is referred to as the osteogenic extracellular matrix (OECM). OECM provides tensile strength and increases the durability of bone, but the OECM also serves as an attachment site and regulatory substrate for cells and a repository for growth factors and cytokines. Increasingly, purified OECM generated by osteogenic cells in culture has attracted interest because it has the capacity to improve the growth and viability of attached cells, enhances the osteogenic program in vitro and in vivo, and shows great promise as a therapeutic tool for orthopedic tissue engineering. This chapter will describe fundamental protocols for the selection and culture of osteogenic cells and conditions for their osteogenic differentiation, and the synthesis, purification and characterization of OECM. Some examples of immobilization to surfaces for the purpose of two- and three-dimensional culture will also be described. © 2020 Elsevier Inc. All rights reserved.Three-dimensional (3D) culturing models, replicating in vivo tissue microenvironments that incorporate native extracellular matrix (ECM), have revolutionized the cell biology field. Fibroblastic cells generate lattices of interstitial ECM proteins. Cell interactions with ECMs and with molecules sequestered/stored within these are crucial for tissue development and homeostasis maintenance. Hence, ECMs provide cells with biochemical and biomechanical cues to support and locally control cell function. Further, dynamic changes in ECMs, and in cell-ECM interactions, partake in growth, development, and temporary occurrences such as acute wound healing. Notably, dysregulation in ECMs and fibroblasts could be important triggers and modulators of pathological events such as developmental defects, and diseases associated with fibrosis and chronic inflammation such as cancer. Studying the type of fibroblastic cells producing these matrices and how alterations to these cells enable changes in ECMs are of paramount importance. This chapter provides a step-by-step method for producing multilayered (e.g., 3D) fibroblastic cell-derived matrices (fCDM). Methods also include means to assess ECM topography and other cellular traits, indicative of fibroblastic functional statuses, like naïve/normal vs. inflammatory and/or myofibroblastic. For these, protocols include indications for isolating normal and diseased fibroblasts (i.e., cancer-associated fibroblasts known as CAFs). Protocols also include means for conducting microscopy assessments, querying whether fibroblasts present with fCDM-dependent normal or CAF phenotypes. These are supported by discrete semi-quantitative digital imaging analyses, providing some imaging processing advice. Additionally, protocols include descriptions for effective fCDM decellularization, which renders cellular debris-free patho/physiological in vivo-like scaffolds, suitable as 3D substrates for subsequent cell culturing. © 2020 Elsevier Inc. All rights reserved.