-
Peterson Clancy posted an update 1 week, 2 days ago
In contrast, many TOC and TIC genes are rapidly induced by blue light in both WT and the ppi2 mutant. We uncovered that this regulation is mediated primarily by cryptochrome 1 (CRY1). Furthermore, deficiency of CRY1 resulted in the decrease of some TOC proteins in vivo. Our results suggest that CRY1 plays key roles in optimizing the content of the TOC-TIC apparatus to accommodate the import of abundant photosynthesis-associated proteins during photomorphogenesis.We aim to generate an artificial neural network (ANN) model to predict early TNF inhibitor users in patients with ankylosing spondylitis. The baseline demographic and laboratory data of patients who visited Samsung Medical Center rheumatology clinic from Dec. 2003 to Sep. 2018 were analyzed. Patients were divided into two groups early-TNF and non-early-TNF users. Machine learning models were formulated to predict the early-TNF users using the baseline data. Feature importance analysis was performed to delineate significant baseline characteristics. The numbers of early-TNF and non-early-TNF users were 90 and 505, respectively. The performance of the ANN model, based on the area under curve (AUC) for a receiver operating characteristic curve (ROC) of 0.783, was superior to logistic regression, support vector machine, random forest, and XGBoost models (for an ROC curve of 0.719, 0.699, 0.761, and 0.713, respectively) in predicting early-TNF users. Feature importance analysis revealed CRP and ESR as the top significant baseline characteristics for predicting early-TNF users. Our model displayed superior performance in predicting early-TNF users compared with logistic regression and other machine learning models. Machine learning can be a vital tool in predicting treatment response in various rheumatologic diseases.The active herbicide ingredient glyphosate [N-(phosphonomethyl)glycine] is frequently detected as a contaminant in groundwater and surface waters. This study investigated effects of UV-A (365 nm), UV-B (302 nm) and UV-C (254 nm) irradiation of glyphosate in water on photolysis and toxicity to aquatic organisms from different trophic levels. A test battery with bacteria (Bacillus subtilis, Aliivibrio fischeri), a green microalga (Raphidocelis subcapitata), and a crustacean (Daphnia magna) was used to assess biological effect of glyphosate and bioactive transformation products before and after UV irradiation (4.7-70 J/cm2). UV-C irradiation at 20 J/cm2 resulted in a 2-23-fold decrease in toxicity of glyphosate to aquatic test organisms. UV-B irradiation at 70 J/cm2 caused a twofold decrease whereas UV-A did not affect glyphosate toxicity at doses ≤ 70 J/cm2. UV-C irradiation of glyphosate in drinking water and groundwater with naturally occurring organic and inorganic constituents showed comparable or greater reduction in toxicity compared to irradiation in deionized water. High-resolution mass spectrometry analyses of samples after UV-C irradiation showed > 90% decreases in glyphosate concentrations and the presence of multiple transformation products. The study suggests that UV mediated indirect photolysis can decrease concentrations of glyphosate and generate less toxic products with decreased overall toxicity to aquatic organisms.Automated detection of exudates from fundus images plays an important role in diabetic retinopathy (DR) screening and evaluation, for which supervised or semi-supervised learning methods are typically preferred. However, a potential limitation of supervised and semi-supervised learning based detection algorithms is that they depend substantially on the sample size of training data and the quality of annotations, which is the fundamental motivation of this work. In this study, we construct a dataset containing 1219 fundus images (from DR patients and healthy controls) with annotations of exudate lesions. In addition to exudate annotations, we also provide four additional labels for each image left-versus-right eye label, DR grade (severity scale) from three different grading protocols, the bounding box of the optic disc (OD), and fovea location. This dataset provides a great opportunity to analyze the accuracy and reliability of different exudate detection, OD detection, fovea localization, and DR classification algorithms. Moreover, it will facilitate the development of such algorithms in the realm of supervised and semi-supervised learning.Different from molecular level topology, the development of supramolecular topology has been limited due to a lack of reliable synthetic methods. Here we describe a supramolecular strategy of accessing Möbius strip, a fascinating topological object featured with only a single edge and single side. Through bending and cyclization of twisted nanofibers self-assembled from chiral glutamate amphiphiles, supramolecular nano-toroids with various twist numbers were obtained. Electron microscopic techniques could clearly identify the formation of Möbius strips when twist numbers on the toroidal fibers are odd ones. Spectroscopic and morphological analysis indicates that the helicity of the Möbius strips and nano-toroids stems from the molecular chirality of glutamate molecules. Therefore, M- and P-helical Möbius strips could be formed from L- and D-amphiphiles, respectively. Our experimental results and theoretical simulations may advance the prospect of creating chiral topologically complex structures via supramolecular approach.The physiological homeostasis of gut mucosal barrier is maintained by both genetic and environmental factors and its impairment leads to pathogenesis such as inflammatory bowel disease. A cytokine like molecule, FAM3D (mouse Fam3D), is highly expressed in mouse gastrointestinal tract. Here, we demonstrate that deficiency in Fam3D is associated with impaired integrity of colonic mucosa, increased epithelial hyper-proliferation, reduced anti-microbial peptide production and increased sensitivity to chemically induced colitis associated with high incidence of cancer. Pretreatment of Fam3D-/- mice with antibiotics significantly reduces the severity of chemically induced colitis and wild type (WT) mice co-housed with Fam3D-/- mice phenocopy Fam3D-deficiency showing increased sensitivity to colitis and skewed composition of fecal microbiota. 4-Methylumbelliferone An initial equilibrium of microbiota in cohoused WT and Fam3D-/- mice is followed by an increasing divergence of the bacterial composition after separation. These results demonstrate the essential role of Fam3D in colon homeostasis, protection against inflammation associated cancer and normal microbiota composition.