• Hoffmann Vazquez posted an update 1 week, 2 days ago

    In the adult brain, increases in neural activity lead to increases in local blood flow. However, in the preterm neonate, studies of cerebral functional haemodynamics have yielded inconsistent results, including negative responses suggesting decreased perfusion and localised tissue hypoxia, probably due to immature neurovascular coupling. Furthermore, the impact of vasoactive medications, such as dopamine and dobutamine used as inotropic therapies in preterm neonates, on cerebrovascular responses to somatosensory input is unknown. We aimed to characterise the cerebral haemodynamic functional response after somatosensory stimulation in the preterm newborn brain, with and without dopamine or dobutamine treatment.

    We studied the cerebral haemodynamic functional response in 13 anaesthetised preterm lambs, using near infrared spectroscopy to measure changes in cerebral oxy- and deoxyhaemoglobin (ΔoxyHb, ΔdeoxyHb) following left median nerve stimulation using stimulus trains of 1.8, 4.8 and 7.8s. The 4.8 and 7.8reterm brain, consistent with increased cerebral blood flow due to neurovascular coupling. Notably, our results show that dopamine/dobutamine reduces oxygen delivery relative to consumption in the preterm brain during somatosensory stimulations, suggesting there may be a risk of intermittent localised tissue hypoxia which has clear implications for clinical practice and warrants further investigation.Increasing numbers of patients with spontaneous subarachnoid hemorrhage(SAH) who recover from surgery and intensive care management still live with cognitive impairment after discharge, indicating the importance of white matter injury at the acute stage of SAH. see more In the present study, standard endovascular perforation was employed to establish an SAH mouse model, and a microRNA (miRNA) chip was used to analyze the changes in gene expression in white matter tissue after SAH. The data indicate that 17 miRNAs were downregulated, including miR-706, miR-669a-5p, miR-669p-5p, miR-7116-5p and miR-195a-3p, while 13 miRNAs were upregulated, including miR-6907-5p, miR-5135, miR-6982-5p, miR-668-5p, miR-8119. Strikingly, miR-706 was significantly downregulated with the highest fold change. Further experiments confirmed that miR-706 could alleviate white matter injury and improve neurological behavior, at least partially by inhibiting the PKCα/MST1/NF-κB pathway and the release of inflammatory cytokines. These results might provide a deeper understanding of the pathophysiological processes in white matter after SAH, as well as potential therapeutic strategies for the translational research.The ratio of ADP and ATP is a natural indicator of cellular bioenergetic state and thus a prominent analyte in metabolism research. Beyond adenylate interconversion via oxidative phosphorylation and ATPase activities, ADP and ATP act as steric regulators of enzymes, e.g. cytochrome C oxidase, and are major factors in mitochondrial calcium storage potential. Consideration of all routes of adenylate conversion is critical to successfully predict their abundance in an experimental system and to correctly interpret many aspects of mitochondrial function. We showcase here how adenylate kinases elicit considerable impact on the outcome of a variety of mitochondrial assays through their drastic manipulation of the adenylate profile. Parameters affected include cytochrome c oxidase activity, P/O ratio, and mitochondrial calcium dynamics. Study of the latter revealed that the presence of ATP is required for mitochondrial calcium to be shaped into a particularly dense form of mitochondrial amorphous calcium phosphate.The brown dog tick (Rhipicephalus sanguineus) parasitises dogs. Over the past decade, two distinct lineages have been recognised – R. sanguineus sensu lato “temperate lineage” and R. sanguineus sensu lato “tropical lineage”. The nominal taxon R. sanguineus (Latreille, 1806) was recently associated with the “temperate lineage”. We here identify the “tropical lineage” as Rhipicephalus linnaei (Audouin, 1826) using material from Australia, where no other Rhipicephalus species parasitises dogs. Whole genome sequencing of R. linnaei from Australia, Fiji and Laos, and assembly of their complete mitochondrial DNA (~15 kb) confirms the genetic identity and distinctness from all other known species within the brown dog tick species complex. Designation of the species R. linnaei is unequivocally supported by material available through the Australian National Insect Collection, Australia. Accordingly, we are formally justified in using R. linnaei for the “tropical lineage”.Malaria is still one of the most important global infectious diseases. Emergence of drug resistance and a shortage of new efficient antimalarials continue to hamper a malaria eradication agenda. link2 Malaria parasites are highly sensitive to changes in the redox environment. Understanding the mechanisms regulating parasite redox could contribute to the design of new drugs. Malaria parasites have a complex network of redox regulatory systems housed in their cytosol, in their mitochondrion and in their plastid (apicoplast). While the roles of enzymes of the thioredoxin and glutathione pathways in parasite survival have been explored, the antioxidant role of α-lipoic acid (LA) produced in the apicoplast has not been tested. To take a first step in teasing a putative role of LA in redox regulation, we analysed a mutant Plasmodium falciparum (3D7 strain) lacking the apicoplast lipoic acid protein ligase B (lipB) known to be depleted of LA. Our results showed a change in expression of redox regulators in the apicoplast and the cytosol. We further detected a change in parasite central carbon metabolism, with lipB deletion resulting in changes to glycolysis and tricarboxylic acid cycle activity. Further, in another Plasmodium cell line (NF54), deletion of lipB impacted development in the mosquito, preventing the detection of infectious sporozoite stages. While it is not clear at this point if the observed phenotypes are linked, these findings flag LA biosynthesis as an important subject for further study in the context of redox regulation in asexual stages, and point to LipB as a potential target for the development of new transmission drugs.Antimalarial drugs capable of targeting multiple parasite stages, particularly the transmissible stages, can be valuable tools for advancing the malaria elimination agenda. Current antifolate drugs such as pyrimethamine can inhibit replicative parasite stages in both humans and mosquitoes, but antifolate resistance remains a challenge. The lack of reliable gametocyte-producing, antifolate-resistant Plasmodium falciparum laboratory strain hinders the study of new antifolate compounds that can overcome antifolate resistance including development stages in the mosquito. We used clustered regularly interspaced short palindromic repeats-Cas9 genome editing to develop a transgenic gametocyte-producing strain of P. falciparum with quadruple mutations (N51I, C59R, S108N, I164L) in the dihydrofolate reductase (dhfr) gene, using NF54 as a parental strain. The transgenic parasites exhibited pyrimethamine resistance while maintaining their gametocyte-producing activity. We then demonstrated that pyrimethamine could no longer inhibit male gametocyte exflagellation in the transgenic parasite. In contrast, P218, the novel antifolate, designed to overcome antifolate resistance, potently inhibited exflagellation. The exflagellation IC50 of P218 was five times lower than the asexual stage half maximal inhibitory concentration (IC50), suggesting a strong barrier for transmission of P218-resistant parasites. The transgenic gametocyte-producing, pyrimethamine-resistant parasite is a robust system for evaluating novel antifolate compounds against non-asexual stage development.More than 68 billion chickens were produced globally in 2018, emphasising their major contribution to the production of protein for human consumption and the importance of their pathogens. Protozoan Eimeria spp. are the most economically significant parasites of chickens, incurring global costs of more than UK £10.4 billion per annum. Seven Eimeria spp. have long been recognised to infect chickens, with three additional cryptic operational taxonomic units (OTUs) first described more than 10 years ago. As the world’s farmers attempt to reduce reliance on routine use of antimicrobials in livestock production, replacing drugs that target a wide range of microbes with precise species- and sometimes strain-specific vaccines, the breakthrough of cryptic genetic types can pose serious problems. Consideration of biological characteristics including oocyst morphology, pathology caused during infection and pre-patent periods, combined with gene-coding sequences predicted from draft genome sequence assemblies, suggest that all three of these cryptic Eimeria OTUs possess sufficient genetic and biological diversity to be considered as new and distinct species. The ability of these OTUs to compromise chicken bodyweight gain and escape immunity induced by current commercially available anticoccidial vaccines indicates that they could pose a notable threat to chicken health, welfare, and productivity. We suggest the names Eimeria lata n. sp., Eimeria nagambie n. link3 sp. and Eimeria zaria n. sp. for OTUs x, y and z, respectively, reflecting their appearance (x) or the origins of the first isolates of these novel species (y, z).The study aim was to analyze whether microvesicles and exosomes, named extracellular vesicles (EVs), purified from Toxoplasma gondii are able to stimulate the protective immunity of experimental mice when administered, as challenge, a highly virulent strain. EVs excreted from T. gondii tachyzoites (RH strain) were purified by chromatography and used for immunization assays in inbred mouse groups (EV-IM). Chronic infected (CHR) and naive (NI) mice were used as control groups, since the immune response is well known. After immunizations, experimental groups were challenged with 100 tachyzoites. Next, parasitemias were determined by real-time PCR (qPCR), and survival levels were evaluated daily. The humoral response was analyzed by detection of IgM, IgG, IgG1 and IgG2a, and opsonization experiments. The cellular response was evaluated in situ by immunohistochemistry on IFN-γ, IL-10, TNF-α and IL-17 expression in cells of five organs (brain, heart, liver, spleen and skeletal muscles). EV immunization reduced parasitemia and increased the survival index in two mouse lineages (A/Sn and BALB/c) infected with a lethal T. gondii strain. EV-IM mice had higher IgG1 levels than IgM or IgG2a. IgGs purified from sera of EV-IM mice were able to opsonize tachyzoites (RH strain), and mice that received these parasites had lower parasitemias, and mortality was delayed 48 h, compared with the same results from those receiving parasites opsonized with IgG purified from NI mice. Brain and spleen cells from EV-IM mice more highly expressed IFN-γ, IL-10 and TNF-α. In conclusion, EV-immunization was capable of inducing immune protection, eliciting high production of IgG1, IFN-γ, IL-10 and TNF-α.Encountering suitable hosts is key for parasite success. A general assumption for disease transmission is that the contact of a parasite with a potential host is driven by the density or relative frequency of hosts. That assumption ignores the potential role of differential host attractiveness for parasites that can drive the encounter of hosts. It has been posited that hosts may be chosen by parasites as a function of their suitability, but the existing literature addressing that hypothesis is still very scarce. In a natural system involving a parasitic Philornis botfly and its multiple bird hosts, there are profound differences in host quality. The Great Kiskadee tolerates and does not invest in resisting the infection, which makes it an optimal host. Alternative hosts are frequently used, but whilst some of them may be good options, others are bad alternatives. Here we examined the host selection processes that drive parasite dynamics in this system with 8 years of data from a longitudinal study under natural conditions.