-
Pagh Suhr posted an update 1 week, 2 days ago
Notably, the reproducibility of power envelope correlation (PEC) was generally the highest among those connectivity measures which are insensitive to volume conduction effect. For the whole-brain network construction, single dipole modeling was better than the dimensionality reduction methods, such as mean or principal component analysis (PCA) of multiple dipoles of a region.
In conclusion, our results described the reproducibility of rsEEG power spectrum, connectivity measures, and network constructions, which could be considered in assessing inter-individual differences in brain-behavior relationships, as well as automatic biometric applications.
In conclusion, our results described the reproducibility of rsEEG power spectrum, connectivity measures, and network constructions, which could be considered in assessing inter-individual differences in brain-behavior relationships, as well as automatic biometric applications.To evaluate how age and apolipoprotein E-ε4 (APOE4) status interact with APOE-independent polygenic risk score (PRSnon-APOE), we estimated PRSnon-APOE in superagers (age ≥ 90 years, N = 346), 89- controls (age 60-89, N = 2930), and Alzheimer’s disease (AD) cases (N = 1760). Using superagers, we see a nearly 5 times greater odds ratio (OR) for AD comparing the top PRSnon-APOE decile to the lowest decile (OR = 4.82, p = 2.5 × 10-6), which is twice the OR as using 89- controls (OR = 2.38, p = 4.6 × 10-9). Thus PRSnon-APOE is correlated with age, which in turn is associated with APOE. Further exploring these relationships, we find that PRSnon-APOE modifies age at onset among APOE4 carriers, but not among noncarriers. More specifically, PRSnon-APOE in the top decile predicts an age at onset 5 years earlier compared with the lowest decile (70.1 vs. 75.0 years; t-test p = 2.4 × 10-5) among APOE4 carriers. This disproportionally large PRSnon-APOE among younger APOE4-positive cases is reflected in a significant statistical interaction between APOE4 status and age at onset (β = -0.02, p = 4.8 × 10-3) as a predictor of PRSnon-APOE. Thus, the known AD risk variants are particularly detrimental in young APOE4 carriers.In recent years, a significant interest in gut microbiota-host crosstalk has increased due to the involvement of gut bacteria on host health and diseases. Gut dysbiosis, a change in the gut microbiota composition alters host-microbiota interactions and induces gut immune dysregulation that have been associated with pathogenesis of several diseases, including cardiovascular diseases (CVD) and chronic kidney diseases (CKD). Gut microbiota affect the host, mainly through the immunological and metabolism-dependent and metabolism-independent pathways. In addition to these, the production of trimethylamine (TMA)/trimethylamine N-oxide (TMAO), uremic toxins and lipopolysaccharides (LPS) by gut microbiota are involved in the pathogenesis of CVD and CKD. Given the current approaches and challenges that can reshape the bacterial composition by restoring the balance between host and microbiota. In this review, we discuss the complex interplay between the gut microbiota, and the heart and the kidney, and explain the gut-cardiovascular axis and gut-kidney axis on the development and progression of cardiovascular diseases and chronic kidney diseases. In addition, we discuss the interplay between gut and kidney on hypertension or cardiovascular pathology.Rodentibacter (R.) heylii is frequently detected in laboratory rodents. Repeats in toxin (RTX) toxins are considered important virulence factors of this major murine pathogen. We evaluated the virulence of a R.heylii strain negative for all known RTX toxin genes and Muribacter (M.) muris, a commensal in mice, in experimental infections of C57BL/6 and BALB/c mice. Experimental intranasal infection with 108 CFU of the pnxI-, pnxII- and pnxIII- R. heylii strain resulted in 75% and 100% mortality in C57BL/6 and BALB/c mice, respectively. In early losses, multiple internal organs were infected and purulent bronchopneumonia was the main pathology. Intranasal application of M. selleck muris did not result in mortality or severe weight loss. Immunoproteomics led to the identification of a surface-associated and specific immunogen, which was designated as R. heylii immunogen A (RhiA) and which was exclusively recognised by sera obtained from mice infected with this R. heylii pathotype. RhiA is a 262.6 kDa large protein containing long imperfect tandem repeats and C-terminal RTX consensus sequences. Immunohistochemical analysis confirmed that this R.heylii pathotype expresses RhiA in the lower respiratory tract. In summary, this study describes a specific immunogen in a virulent R. heylii, strain which is an excellent antigen for pathotype-specific serological screenings and which might carry out RTX-related functions.Abundant intraperitoneal (IP) accumulation of extracellular mucus in patients with appendiceal mucinous carcinoma peritonei (MCP) causes compressive organ dysfunction and prevents delivery of chemotherapeutic drugs to cancer cells. We hypothesized that reducing extracellular mucus would decrease tumor-related symptoms and improve chemotherapeutic effect in patient-derived models of MCP. Mucolysis was achieved using a combination of bromelain (BRO) and N-acetylcysteine (NAC). Ex vivo experiments of mucolysis and chemotherapeutic drug delivery/effect were conducted with MCP and non-MCP tissue explants. In vivo experiments were performed in mouse and rat patient-derived xenograft (PDX) models of early and late (advanced) MCP. MCP tumor explants were less chemosensitive than non-MCP explants. Chronic IP administration of BRO + NAC in a mouse PDX model of early MCP and a rat PDX model of late (advanced) MCP converted solid mucinous tumors into mucinous ascites (mucolysis) that could be drained via a percutaneous catheter (rat model only), significantly reduced solid mucinous tumor growth and improved the efficacy of chemotherapeutic drugs. Combination of BRO + NAC efficiently lyses extracellular mucus in clinically relevant models of MCP. Conversion of solid mucinous tumors into mucinous ascites decreases tumor bulk and allows for minimally invasive drainage of liquified tumors. Lysis of extracellular mucus removes the protective mucinous coating surrounding cancer cells and improves chemotherapeutic drug delivery/efficacy in cancer cells. Our data provide a preclinical rationale for the clinical evaluation of BRO + NAC as a therapeutic strategy for MCP.