• Abernathy Coates posted an update 1 week, 1 day ago

    5 and 8.5 Mb, respectively, and both contain ∼96% of BUSCO genes. Thus, they are highly contiguous and complete. The genomes are supported by an integrative taxonomy approach including placement in a genome-based phylogeny of Collembola and designation of a neotype for 1 of the species. Higher heterozygosity values are recorded in the more mobile species. Both species are devoid of the biosynthetic pathway for β-lactam antibiotics known in several Collembola, confirming the tight correlation of antibiotic synthesis with the species way of life.

    It is now possible to generate high-quality genomes from single specimens of minute, field-preserved metazoans, exceeding the minimum contig N50 (1 Mb) required by the Earth BioGenome Project.

    It is now possible to generate high-quality genomes from single specimens of minute, field-preserved metazoans, exceeding the minimum contig N50 (1 Mb) required by the Earth BioGenome Project.

    This study aimed to explore whether icarrin (ICA) can protect cardiomyocytes from hypertension-induced damage by inhibiting endoplasmic reticulum stress (ERS).

    Spontaneously hypertensive rats (SHRs) were orally administered water or ICA at 10, 20 and 40 mg/kg once daily for 12 weeks, and Wistar-Kyoto (WKY) rats were used as control. Changes in the growth and blood pressure of rats were assessed. Cardiac function was determined by ultrasound and the left ventricle mass was calculated. Myocardial tissue structure was assessed by haematoxylin and eosin staining, cardiomyocyte apoptosis was observed by TUNEL staining and the expression of ERS-related proteins was determined by western blotting.

    In the SHR group, blood pressure was significantly high, left ventricular function decreased and left ventricular mass index increased. Additionally, left ventricular cardiomyocyte hypertrophy, disordered myofilament arrangement and increased cardiomyocyte apoptosis were observed by histological staining. ERS-induced proteins associated with apoptosis, including GRP78, PERK, ATF-6, ATF-4, CHOP, DR5, Caspase 12, c-JUN and ASK-1 were found to be highly expressed. ICA treatment reduced blood pressure and regulated the expression of proteins induced by ERS. Cardiomyocyte apoptosis decreased and left ventricular function improved.

    ICA can inhibit ERS-induced apoptosis of cardiomyocytes and protect ventricular function in SHR.

    ICA can inhibit ERS-induced apoptosis of cardiomyocytes and protect ventricular function in SHR.Ghost crabs are the fastest and most aerobically fit of the land crabs. The exceptional locomotory capacity of these invertebrate athletes seemingly depends upon effective coupling between the cardiovascular system and skeletal muscles, but how these systems are integrated has not been well defined. In the present study, we investigated the relationship between aerobic muscle fibers within the skeletal muscles used to power running and the blood vessels supplying these muscles. We used histochemical staining techniques to identify aerobic versus glycolytic fibers and to characterize membrane invaginations within the aerobic fibers. We also determined how the diameters of these two fiber types scale as a function of body size, across two orders of magnitude. selleck chemical Vascular casts were made of the blood vessels perfusing these muscles, and special attention was given to small, capillary-like vessels supplying the fibers. Finally, we injected fluorescent microspheres into the hearts of living crabs and tracked their deposition into different muscle regions to quantify relative hemolymph flow to metabolic fiber types. Collectively, these analyses demonstrate that ghost crab muscles are endowed with an extensive arterial hemolymph supply. Moreover, the hemolymph flow to aerobic fibers is significantly greater than to glycolytic fibers within the same muscles. Aerobic fibers are increasingly subdivided by membrane invaginations as crabs increase in size, keeping the diffusive distances relatively constant. These findings support a functional coupling between a well-developed circulatory system and metabolically active muscle fibers in these invertebrates.The human foot is known to aid propulsion by storing and returning elastic energy during steady-state locomotion. While its function during other tasks is less clear, recent evidence suggests the foot and its intrinsic muscles can also generate or dissipate energy based on the energetic requirements of the center of mass during non-steady-state locomotion. In order to examine contributions of the foot and its muscles to non-steady-state locomotion, we compared the energetics of the foot and ankle joint while jumping and landing before and after the application of a tibial nerve block. Under normal conditions, energetic contributions of the foot rose as work demands increased, while the relative contributions of the foot to center of mass work remained constant with increasing work demands. Under the nerve block, foot contributions to both jumping and landing decreased. Additionally, ankle contributions were also decreased under the influence of the block for both tasks. Our results reinforce findings that foot and ankle function mirror the energetic requirements of the center of mass and provide novel evidence that foot contributions remain relatively constant under increasing energetic demands. Also, while the intrinsic muscles can modulate the energetic capacity of the foot, their removal accounted for only a 3% decrement in total center of mass work. Therefore, the small size of intrinsic muscles appears to limit their capacity to contribute to center of mass work. However, their role in contributing to ankle work capacity is likely important for the energetics of movement.Spodoptera frugiperda (J. E. Smith, 1797) is a polyphagous pest of global relevance due to the damage it inflicts on agricultural crops. In South American countries, this species is one of the principal pests of maize and cotton. Currently, S. frugiperda is also emerging as an important pest of soybeans and winter cereals in Brazil. Chemical control is one of the main control tactics against S. frugiperda, even though resistance against numerous modes of action insecticides has been reported. To support insect resistance management programs, we evaluated the fitness costs of resistance of S. frugiperda to the acetylcholinesterase inhibitor chlorpyrifos. Fitness costs were quantified by comparing biological parameters of chlorpyrifos-resistant and -susceptible S. frugiperda and their F1 hybrids (heterozygotes) on non-Bt cotton, non-Bt maize, non-Bt soybean, and oats. The results revealed that the chlorpyrifos-resistant genotype showed lower pupa-to-adult and egg-to-adult survivorship and reduced larval weights on oats; longer neonate-to-pupa and egg-to-adult developmental periods, and lower pupal weights and fecundity on maize; lower pupal weights on soybean; and reduced fecundity on cotton compared with the chlorpyrifos-susceptible genotype.