• Kaspersen Krogsgaard posted an update 1 week, 1 day ago

    High incidence of spermatozoa with chromosomal abnormalities has been reported in advanced oligospermia and asthenozoospermia that require ICSI. Some epigenetic alterations were reported in the children born with ART.

    Certain genetic knowledge is important for professionals involved in reproductive medicine, even if they are not genetic experts.

    Certain genetic knowledge is important for professionals involved in reproductive medicine, even if they are not genetic experts.

    This study was conducted to investigate how the COVID-19 pandemic has impacted reproductive medical providers’ behaviors and considerations, including their concerns regarding the necessity of fertility treatments.

    A web-based questionnaire was distributed to Japan Society of Fertilization and Implantation (JSFI) members from May 18 through May 31, 2020 to survey their professional behaviors and concerns during the COVID-19 pandemic.

    Most survey participants reported a decrease in the number of patients and a decrease in their workload. Most also believe that the use of fertility treatments will return to the pre-pandemic levels after the COVID-19 pandemic ends. Additionally, more than half of the participants reported that they consider fertility treatment neither necessary nor unnecessary during the COVID-19 pandemic.

    At the institute where reproductive medical providers worked in Japan, the number of outpatients and the working time tended to decrease during the COVID-19 pandemic. However, amid fears of infection during the COVID-19 pandemic, the reproductive medical providers working at fertility institutes in Japan have remained engaged in their work with a sense of mission and hope.

    At the institute where reproductive medical providers worked in Japan, the number of outpatients and the working time tended to decrease during the COVID-19 pandemic. However, amid fears of infection during the COVID-19 pandemic, the reproductive medical providers working at fertility institutes in Japan have remained engaged in their work with a sense of mission and hope.Global warming is already having a negative impact on vital sectors on which human development depends, such as water resource availability. In this study, the changes and abrupt change timing of climatic extreme indices, aridity and drought over the Region of South Aegean are captured using the Mann-Kendall and Pettitt tests, while the latter variables are correlated with the water volume transported by ships to the region as well as the relevant costs. The region’s climate is shifting to warmer conditions with less precipitation, since significantly positive trends were noted with regard to the number of tropical nights, warm nights, warm days, the warm spell duration index and the diurnal temperature range; significant negative trends were observed in relation to the number of cool nights, cool days and the cold spell duration index, with the change-point year for the latter variables being 2006. Inaddition, 7/11 precipitation related indices exhibited a downward trend, while significantly negative trends precipitation, drought phenomena and aridity with 7/11.We address the prediction of the number of new cases and deaths for the coronavirus disease 2019 (COVID-19) over a future horizon from historical data (forecasting). We use a model-based approach based on a stochastic Susceptible-Infections-Removed (SIR) model with time-varying parameters, which captures the evolution of the disease dynamics in response to changes in social behavior, non-pharmaceutical interventions, and testing rates. We show that, in the presence of asymptomatic cases, such model includes internal parameters and states that cannot be uniquely identified solely on the basis of measurements of new cases and deaths, but this does not preclude the construction of reliable forecasts for future values of these measurements. Such forecasts and associated confidence intervals can be computed using an iterative algorithm based on nonlinear optimization solvers, without the need for Monte Carlo sampling. Our results have been validated on an extensive COVID-19 dataset covering the period from March through December 2020 on 144 regions around the globe.A laser micromarking technique on plant epidermis was developed to study how a plant can reduce the stress in bending behavior by controlling the growth and morphogenesis. The negative gravitropism in a pea seedling (Pisum sativum L.) was discussed based on the time-dependent displacement of laser marking points which were formed by spatially-selective laser ablation of the cuticle layer that covers the outer surface of a plant. The elongation of the stem in the horizontal direction was remarkable in the first half of the gravitropism. The elongation percentages of the stem length between laser-marking points at around upper surface, middle, and bottom surface were evaluated to be 2.57, 4.87, and 7.70%, respectively. The characteristic feature of the stem bending in gravitropism is the elongation even at the upper surface region, that is, inside of the bending. This is a different feature from cantilever beams for structural materials like metals and polymers, where the compression of the upper surface and elongation of the bottom surface are caused by bending. Another laser micromarking technique was developed to improve the resolution of a dot-matrix pattern by fluorescent material transfer to a plant through a masking film with a micro-hole matrix pattern. Similar time-dependent displacement behavior was observed for a fluorescent dot-marked stem showing a feedback control loop in the mechanical optimization. These results suggested that plants solve the problem of the stress in stem bending through growth. The laser micromarking is an effective method for studying the mechanical optimization in plants.Plants establish their root system as a three-dimensional structure, which is then used to explore the soil to absorb resources and provide mechanical anchorage. Simplified two-dimensional growth systems, such as agar plates, have been used to study various aspects of plant root biology. However, it remains challenging to study the more realistic three-dimensional structure and function of roots hidden in opaque soil. Here, we optimized X-ray computer tomography (CT)-based visualization of an intact root system by using Toyoura sand, a standard silica sand used in geotechnology research, as a growth substrate. Distinct X-ray attenuation densities of root tissue and Toyoura sand enabled clear image segmentation of the CT data. Sorghum grew especially vigorously in Toyoura sand and it could be used as a model for analyzing root structure optimization in response to mechanical obstacles. NX-5948 chemical The use of Toyoura sand has the potential to link plant root biology and geotechnology applications.