-
Eriksen Teague posted an update 1 week, 1 day ago
Coronavirus-disease-19 (COVID-19) continues to affect millions of individuals worldwide. Antiviral activity of mouthrinses remains an important research area as the oral cavity is a site of SARS-CoV-2 initial replication. The aim of this study was to assess the effectiveness of three different mouthrinses in reducing the oral/oropharyngeal SARS-CoV-2 viral load.
Adult patients, hospitalized with confirmed COVID-19 were recruited for the study. Oral/oropharyngeal baseline SARS-CoV-2 samples were collected and analyzed by Real-Time-PCR. Subsequently, patients were instructed to rinse with 1% hydrogen peroxide (H
O
), 0.12% chlorhexidine (CHX), 1% povidone‑iodine (PVP-I) or Sodium Chloride 0.9% (placebo). Viral loads were measured right after (T1), and at 45min (T2) from the rinse.
In the PVP-I 1% group, 5/8 (62.5%) patients at T1, and 3/8 (37.5%) patients at T2, SARS-CoV-2 was not detectable in the swab specimens. In the H
O
1% group, 2/11 (18.2%) patients at T1, and 2/11 (18.2%) other patients at T2 showed no SARS-CoV-2 loads. One (12.5%) patient in the CHX 0.12% group showed SARS-CoV-2 negativity at T2. One (9.1%) patient at T1, and another (9.1%) patient at T2 showed no SARS-CoV-2 loads in the placebo group.
Oral SARS-CoV-2 loads were reduced at T1 in the PVP-I 1% and H
O
1% groups.
PVP-I 1% was the most effective rinse especially in patients with low viral copy numbers at baseline.
PVP-I 1 % was the most effective rinse especially in patients with low viral copy numbers at baseline.Acute lung injury (ALI) is a life-threatening disease characterized by severe inflammatory response, which has no pharmacological therapy in clinic. In this study, we found that eupalinolide B (EB), a sesquiterpene lactone isolated from Eupatorium lindleyanum, significantly ameliorated lipopolysaccharide (LPS)-induced ALI in mice, which manifests as reduction in lung injury score, activity of myeloperoxidase, and release of cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1). In RAW264.7 murine macrophages, EB effectively inhibited LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) by down-regulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2), respectively. Mechanistically, EB not only blocked LPS-induced phosphorylation of inhibitor of nuclear factor kappa B kinase-α/β (IKKα/β), phosphorylation and degradation of inhibitor of nuclear factor-kappa B alpha (IκBα), and phosphorylation and nuclear translocation of nuclear factor-kappa B (NF-κB) P65, but also suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) in vitro or in vivo. Through cellular thermal shift assay and western blotting, EB was demonstrated to target and inactivate transforming growth factor β activated kinase-1 (TAK1), which is an important upstream kinase for the activation of NF-κB and MAPKs pathways. Additionally, EB-mediated actions were markedly abolished by dithiothreitol in LPS-exposed RAW264.7 cells, suggesting a crucial role of the α,γ-unsaturated lactone for the anti-inflammatory activity of EB. In conclusion, our findings showed that EB could effectively alleviate ALI in mice, and attenuate inflammatory response by inhibiting the activation of TAK1, and TAK1-mediated activation of NF-κB and MAPKs cascades.Pancreatic cancer is characterized by immune tolerance and immunotherapeutic resistance. Veliparib Circulating cells may reflect the general immune status of the patient. However, the circulating immune status of pancreatic cancer are largely uncharacterized. Here, the subset distribution was analyzed in peripheral blood samples from 101 patients with pancreatic cancer and 142 healthy volunteers by using flow cytometry. The differences of the subpopulation distribution in the two groups and the relation between clinical parameters with the subset were determined. Moreover, the clinical application of each subset as prognosis biomarker was also assessed by Kaplan-Meier analysis. The reduced proportion of total lymphocyte and upregulated CD4/CD8 ratio were observed in pancreatic cancer than those in healthy controls. Of note, increased proportions of lymphocyte and NKT cells were noticed more frequently in patients over 60 years (P = 0.043) and patients with metastasis (P = 0.027), respectively. However, our correlation analyses revealed no correlation between the proportions of T cells, B cell and NK cells with clinicopathologic features. Furthermore, the analysis displayed that proportions of CD4+T cell, B cell and CD4/CD8 ratio significantly reduced in the cohort of post-operation, while the frequency of CD8+T cell and NKT cells elevated remarkably. Finally, the Kaplan-Meier analysis indicated that patients with high lymphocyte proportion might have prolonged overall survival (P = 0.007). The altered distribution of peripheral blood immune cell subpopulation in pancreatic cancer and its relationship with clinical outcome highlight the potential use of circulating immune subsets as prognostic biomarkers in pancreatic cancer.There is evidence that methionine enkephalin (MENK), an opioid peptide, promotes anti-tumor immune responses. In this study, the effect of MENK on colorectal cancer (CRC) and its mechanisms of action were examined in vivo. The intraperitoneal administration of 20 mg/kg MENK effectively inhibited MC38 subcutaneous colorectal tumor growth in mice. MENK inhibited tumor progression by increasing the immunogenicity and recognition of MC38 cells. MENK down-regulated the oncogene Kras and anti-apoptotic Bclxl and Bcl2, suppressed Il1b, Il6, iNOS, and Arg1 (encoding inflammatory cytokines), and increased Il17a and Il10 levels. MENK promoted a tumor suppressive state by decreasing the immune checkpoints Pd-1, Pd-l1, Lag3, Flgl1, and 2b4 in CRC. MENK also altered the immune status of the tumor immune microenvironment (TIME). It increased the infiltration of M1-type macrophages, CD8+T cells, and CD4+T cells and decreased the proportions of G-MDSCs, M-MDSCs, and M2-type macrophages. MENK accelerated CD4+TEM and CD8+TEM cell activation in the TIME and up-regulated IFN-γ, TNF-α, and IL-17A in CD4+T cells and Granzyme B in CD8+T cells. In addition, analyses of PD-1 and PD-L1 expression indicated that MENK promoted the anti-tumor immune response mediated by effector T cells. Finally, OGFr was up-regulated at the protein and mRNA levels by MENK, and the inhibitory effects of MENK on tumor growth were blocked by NTX, a specific blocker of OGFr. These finding indicate that MENK remodels the TIME in CRC to inhibit tumor progression by binding to OGFr. MENK is a potential therapeutic agent for CRC, especially for improving the efficacy of immunotherapy.Researchers continue to explore drug targets to treat the characteristic pathologies of Alzheimer’s disease (AD). Some drugs relieve the pathological processes of AD to some extent, but the failed clinical trials indicate that multifunctional agents seem more likely to achieve the therapy goals for this neurodegenerative disease. Herein, a novel compound named melatonin-trientine (TM) has been covalently synthesized with the natural antioxidant compounds melatonin and the metal ion chelator trientine. After toxicological and pharmacokinetic verification, we elucidated the effects of intraperitoneal administration of TM on AD-like pathology in 6-month-old mice that express both the β-amyloid (Aβ) precursor protein and presenilin-1 (APP/PS1). We found that TM significantly decreased Aβ deposition and neuronal degeneration in the brains of the APP/PS1 double transgenic mice. This result may be due to the upregulation of iron regulatory protein-2 (IRP2), insulin degrading enzyme (IDE), and low density lipoprotein receptor related protein 1 (LRP1), which leads to decreases in APP and Aβ levels. Additionally, TM may promote APP non-amyloidogenic processing by activating the melatonin receptor-2 (MT2)-dependent signaling pathways, but not MT1. In addition, TM plays an important role in blocking γ-secretase, tau hyperphosphorylation, neuroinflammation, oxidative stress, and metal ion dyshomeostasis. Our results suggest that TM may effectively maximize the therapeutic efficacy of targeting multiple mechanisms associated with AD pathology.High-performance supercapacitors have attracted considerable interests due to their high-power density, fast charge/discharge process and long cycle life. However, the wide application of supercapacitors is limited by their low energy density. Herein, the hierarchical core-shell structured NiCoP@NiS nanoarrays have been successfully synthesized by using the vertically grown nickel-cobalt bimetallic phosphide (NiCoP) nanowire as the core and the nickel sulfide (NiS) by electrodeposition as the shell. As the “super channel” for electron transfer, the NiCoP core is coupled with the NiS shell to promote rapid diffusion of electrons and improve cycle stability of the electrode. Consequently, the optimized NiCoP@NiS nanoarrays display an extremely good specific capacitance (2128F g-1 at 1 A g-1) and a superior long cycle life (the capacitance retention of 90.36 % after 10,000 cycles). A hybrid supercapacitor (HSC) has been assembled using the NiCoP@NiS as the positive and the activated carbon (AC) as the negative, which displays a superior energy density of 30.47 Wh kg-1 at a remarkable power energy of 800 W kg-1. This study shows that the prepared hierarchical core-shell structured nanoarrays have great prospects as a novel electrode material in energy storage.The photocatalytic performance of polymeric carbon nitride (CN) is mainly restricted by the poor mass charge separation efficiency and poor light absorption due to its polymeric nature. The conventional strategies to address these problems involved constructing a nanosheets structure would result in a blue shifted light absorption and increased exciton binding energy. Here, with combination of ammonia etching and selectively hydrogen-bond breaking, holey carbon nitride nanosheets (hCNNS) were constructed, thus widening the light absorption range, and spontaneously shortening the migration distance of electrons and holes in the lateral and vertical directions, respectively. Further analysis also found out the reserved atomic structure order endowed hCNNS with the relatively high redox potential. When irradiated with visible light (λ > 420 nm) and loaded with 3 wt% Pt as the cocatalyst, the hydrogen evolution rate of hCNNS was about 40 times higher than the bulk CN, and the apparent quantum yield (AQY) of hCNNS is 1.47% at 435 ± 15 nm. We expect this research can provide a new sight for achieving highly efficient solar utilization of CN-based photocatalysts.Aqueous zinc-ions batteries with low cost, reliable safety, high theoretical specific capacity and eco-friendliness have captured conspicuous attention in large-scale energy storage. However, the developed cathodes often suffer from low electrical conductivity and sluggish Zn2+ diffusion kinetics, which severely hampers the development of aqueous zinc-ions batteries. Herein, we successfully prepare Mg/PANI/V2O5•nH2O (MPVO) nanosheets through conducting polymers (polyaniline) and metal ions (Mg2+) co-intercalated strategy and systematically explore its electrochemical performance as cathode materials for aqueous zinc-ion batteries. Benefitting from the synergistic effect of polyaniline and Mg2+ co-intercalated, the MPVO exhibits larger interlayer spacing and higher electrical conductivity than the single guest intercalation, which significantly enhances the electrochemical kinetics. As a consequence, the MPVO cathodes deliver superior specific capacity, rate capability and long-term cycling performance. Moreover, multiple characterizations and theoretical calculations are executed to expound the relevant mechanism.