-
Mason Wise posted an update 1 week ago
Post-traumatic stress disorder (PTSD) is a heterogeneous condition evidenced by the absence of objective physiological measurements applicable to all who meet the criteria for the disorder as well as divergent responses to treatments. This study capitalized on biological diversity observed within the PTSD group observed following epigenome-wide analysis of a well-characterized Discovery cohort (N = 166) consisting of 83 male combat exposed veterans with PTSD, and 83 combat veterans without PTSD in order to identify patterns that might distinguish subtypes. Computational analysis of DNA methylation (DNAm) profiles identified two PTSD biotypes within the PTSD+ group, G1 and G2, associated with 34 clinical features that are associated with PTSD and PTSD comorbidities. The G2 biotype was associated with an increased PTSD risk and had higher polygenic risk scores and a greater methylation compared to the G1 biotype and healthy controls. The findings were validated at a 3-year follow-up (N = 59) of the same individuals as well as in two independent, veteran cohorts (N = 54 and N = 38), and an active duty cohort (N = 133). In some cases, for example Dopamine-PKA-CREB and GABA-PKC-CREB signaling pathways, the biotypes were oppositely dysregulated, suggesting that the biotypes were not simply a function of a dimensional relationship with symptom severity, but may represent distinct biological risk profiles underpinning PTSD. The identification of two novel distinct epigenetic biotypes for PTSD may have future utility in understanding biological and clinical heterogeneity in PTSD and potential applications in risk assessment for active duty military personnel under non-clinician-administered settings, and improvement of PTSD diagnostic markers.Large-scale brain imaging studies by the ENIGMA Consortium identified structural changes associated with attention-deficit/hyperactivity disorder (ADHD). It is not clear why some brain regions are impaired and others spared by the etiological risks for ADHD. We hypothesized that spatial variation in brain cell organization and/or pathway expression levels contribute to selective brain region vulnerability (SBRV) in ADHD. In this study, we used the largest available collection of magnetic resonance imaging (MRI) results from the ADHD ENIGMA Consortium (subcortical MRI n = 3242; cortical MRI n = 4180) along with high-resolution postmortem brain microarray data from Allen Brain Atlas (donors n = 6) from 22 brain regions to investigate our SBRV hypothesis. We performed deconvolution of the bulk transcriptomic data to determine abundances of neuronal and nonneuronal cells in the brain. We assessed the relationships between gene-set expression levels, cell abundance, and standardized effect sizes representing regional changes in brain sizes in cases of ADHD. Our analysis yielded significant correlations between apoptosis, autophagy, and neurodevelopment genes with smaller brain sizes in ADHD, along with associations to regional abundances of astrocytes and oligodendrocytes. The lack of enrichment of common genetic risk variants for ADHD within implicated gene sets suggests an environmental etiology to these differences. This work provides novel mechanistic clues about SBRV in ADHD.Eukaryotic sliding clamp proliferating cell nuclear antigen (PCNA) plays a critical role as a processivity factor for DNA polymerases and as a binding and acting platform for many proteins. The ring-shaped PCNA homotrimer and the DNA damage checkpoint clamp 9-1-1 are loaded onto DNA by clamp loaders. PCNA can be loaded by the pentameric replication factor C (RFC) complex and the CTF18-RFC-like complex (RLC) in vitro. In cells, each complex loads PCNA for different purposes; RFC-loaded PCNA is essential for DNA replication, while CTF18-RLC-loaded PCNA participates in cohesion establishment and checkpoint activation. After completing its tasks, PCNA is unloaded by ATAD5 (Elg1 in yeast)-RLC. The 9-1-1 clamp is loaded at DNA damage sites by RAD17 (Rad24 in yeast)-RLC. All five RFC complex components, but none of the three large subunits of RLC, CTF18, ATAD5, or RAD17, are essential for cell survival; however, deficiency of the three RLC proteins leads to genomic instability. In this review, we describe recent findings that contribute to the understanding of the basic roles of the RFC complex and RLCs and how genomic instability due to deficiency of the three RLCs is linked to the molecular and cellular activity of RLC, particularly focusing on ATAD5 (Elg1).ST-segment elevation myocardial infarction (STEMI) is characterized by thrombotic coronary artery occlusions caused by atherosclerotic plaque rupture. The gut microbiome potentially contributes to the pathogenesis of coronary artery diseases. This study investigated the microbial diversity and composition of coronary thrombi in STEMI patients and the composition of the thrombus microbiome relative to that of the oral and gut microbiomes. A case-control study was performed with 22 STEMI patients and 20 age- and sex-matched healthy controls. Coronary thrombi were acquired from STEMI patients via manual thrombus aspiration during primary coronary intervention. Oral swab and stool samples were collected from both groups, and 16S rRNA sequencing and metagenomic microbiome analyses were performed. Microbial DNA was detected in 4 of 22 coronary thrombi. Proteobacteria (p) and Bacteroidetes (p) were the most abundant phyla. The oral and gut microbiomes significantly differed between patients and healthy controls. The patient group presented microbial dysbiosis, as follows a higher relative abundance of Proteobacteria (p) and Enterobacteriaceae (f) in the gut microbiome and a lower abundance of Firmicutes (p) and Haemophilus (g) in the oral microbiome. Furthermore, 4 significantly abundant genera were observed in the coronary thrombus in the patients Escherichia, 1.25%; Parabacteroides, 0.25%; Christensenella, 0.0%; and Bacteroides, 7.48%. The present results indicate that the relative abundance of the gut and oral microbiomes was correlated with that of the thrombus microbiome.The clinical application of doxorubicin, one of the most effective anticancer drugs, has been limited due to its adverse effects, including cardiotoxicity. One of the hallmarks of doxorubicin-induced cytotoxicity is mitochondrial dysfunction. Despite intensive research over recent decades, there are no effective approaches for alleviating doxorubicin-induced cytotoxicity. Melatonin, a natural hormone that is primarily secreted by the pineal gland, is emerging as a promising adjuvant that protects against doxorubicin-induced cytotoxicity owing to its pharmaceutical effect of preserving mitochondrial integrity. However, the underlying mechanisms are far from completely understood. Here, we provide novel evidence that treatment of H9c2 cardiomyoblasts with doxorubicin strongly induced AMP-activated protein kinase α2 (AMPKα2), which translocated to mitochondria and interfered with their function and integrity, ultimately leading to cellular apoptosis. These phenomena were significantly blocked by melatonin treatment. The levels of AMPKα2 in murine hearts were tightly associated with cardiotoxicity in the context of doxorubicin and melatonin treatment. Therefore, our study suggests that the maintenance of mitochondrial integrity is a key factor in reducing doxorubicin-induced cytotoxicity and indicates that AMPKα2 may serve as a novel target in the design of cytoprotective combination therapies that include doxorubicin.The nanoformulations of pesticides have shown great interest from many parties due to their slow release capability and site-specific delivery. Hence, in this work, a new nanoformulation of a fungicide, namely chitosan-hexaconazole nanoparticles with a mean diameter size of 18 nm was subjected to the residual analysis on oil palm tissue, leaf and palm oil (crude palm oil and crude palm kernel oil) using a quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with the gas chromatography-micro electron capture detector (GC-µECD). The chitosan-hexaconazole nanoparticles were applied using the trunk injection method at 4.5 g a.i./palm (standard single dose) and 9.0 g a.i./palm (double dose). The fungicide residue was analyzed at 0 (6 h after application), 1, 3, 7, 14, 30, 60, 90, and 120 days after treatment. The palm oil matrices; the crude palm oil (CPO) and crude palm kernel oil (CPKO) were found to be residue-free. However, it was observed that high accumulation of the fungicide in the stem tissue and leaf after the treatment using the chitosan-hexaconazole nanoparticles, which is good for better bioavailability for the treatment of the fungi, Ganoderma boninense. The dissipation kinetic at double dose treatment in the tissue and leaf was found to govern by the second-order kinetic with half-lives (t1/2) of 383 and 515 days, respectively.To characterize the molecular mechanisms underlying life-stage transitions in Phytophthora infestans, we initiated a chemical genetics approach by screening for a stage-specific inhibitor of morphological development from microbial culture extracts prepared mostly from actinomycetes from soil in Japan. Of the more than 700 extracts, one consistently inhibited Ph. infestans cyst germination. Purification and identification of the active compound by ESI-MS, 1H-NMR, and 13C-NMR identified β-rubromycin as the inhibitor of cyst germination (IC50 = 19.8 μg/L); β-rubromycin did not inhibit growth on rye media, sporangium formation, zoospore release, cyst formation, or appressorium formation in Ph. infestans. Further analyses revealed that β-rubromycin inhibited the germination of cysts and oospores in Pythium aphanidermatum. A chemical genetic approach revealed that β-rubromycin stimulated the expression of RIO kinase-like gene (PITG_04584) by 60-fold in Ph. infestans. Genetic analyses revealed that PITG_04584, which lacks close non-oomycete relatives, was involved in zoosporogenesis, cyst germination, and appressorium formation in Ph. infestans. These data imply that further functional analyses of PITG_04584 may contribute to new methods to suppress diseases caused by oomycetes.Erythroparvovirus (B19V) genomes have been detected in various organs of infected individuals including endothelial cells of the heart muscle. However, the role of B19V as a causative pathogen of myocardial damage is still unknown. Selleckchem BAY 87-2243 The majority of reports focus on the presence of viral DNA ignoring proof of viral RNAs as important markers for viral activity. During this study, we established (RT-) qPCR to characterize expression of B19V RNAs (NS1 and VP1/2) in endomyocardial biopsies (EMBs) of 576 patients with unexplained heart failure. 403/576 (70%) EMBs were positive for B19V DNA. B19V mRNAs NS1 and/or VP1/2, indicating viral activity, could be detected in 38.5% of B19V DNA positive samples using the newly established B19V RT-PCRs. 22.1% of samples were characterized by only NS1 mRNA detection while 6.0% revealed only VP1/2 mRNA expression. Detection of both intermediates was successful in 10.4% of samples. Applying the molecular testing, our study revealed that a high proportion (38.5%) of B19V DNA positive EMBs was characterized by viral transcriptional activity.