-
Ali McBride posted an update 5 days, 10 hours ago
Our model is found to be able to type using the local chemical environments, in a way highly in accordance with chemists’ intuition.In this work, we present a one-step second-order converger for state-specific (SS) and state-averaged (SA) complete active space self-consistent field (CASSCF) wave functions. Robust convergence is achieved through step restrictions using a trust-region augmented Hessian (TRAH) algorithm. To avoid numerical instabilities, an exponential parameterization of variational configuration parameters is employed, which works with a nonredundant orthogonal complement basis. This is a common approach for SS-CASSCF and is extended to SA-CASSCF wave functions in this work. Our implementation is integral direct and based on intermediates that are formulated in either the sparse atomic-orbital or small active molecular-orbital basis. Thus, it benefits from a combination with efficient integral decomposition techniques, such as the resolution-of-the-identity or the chain-of-spheres for exchange approximations. This facilitates calculations on large molecules, such as a Ni(II) complex with 231 atoms and 5154 basis functions. The runtime performance of TRAH-CASSCF is competitive with the other state-of-the-art implementations of approximate and full second-order algorithms. In comparison with a sophisticated first-order converger, TRAH-CASSCF calculations usually take more iterations to reach convergence and, thus, have longer runtimes. However, TRAH-CASSCF calculations still converge reliably to a true minimum even if the first-order algorithm fails.Interest in ab initio property prediction of π-conjugated polymers for technological applications places significant demand on “cost-effective” and conceptual computational methods, particularly effective, one-particle theories. This is particularly relevant in the case of Kohn-Sham Density Functional Theory (KS-DFT) and its new competitors that arise from correlated orbital theory, the latter defining the QTP family of DFT functionals. This study presents large, ab initio equation of motion-coupled cluster calculations using the massively parallel ACESIII to target the fundamental bandgap of two prototypical organic polymers, trans-polyacetylene (tPA) and polyacene (Ac), and provides an assessment of the new quantum theory project (QTP) functionals for this problem. Further results focusing on the 1Ag (1Ag), 1Bu (1B2u), and 3Bu (3B2u) excited states of tPA (Ac) are also presented. By performing calculations on oligomers of increasing size, extrapolations to the thermodynamic limit for the fundamental and all excitation gaps, as well as estimations of the exciton binding energy, are made. Thermodynamic-limit results for a combination of “optimal” and model geometries are presented. Calculated results for excitations that are adequately described using a single-particle model illustrate the benefits of requiring a KS-DFT functional to satisfy the Bartlett ionization potential theorem.Materials that feature bistable elements, hysterons, exhibit memory effects. Often, these hysterons are difficult to observe or control directly. Here, we introduce a mechanical metamaterial in which slender elements, interacting with pushers, act as mechanical hysterons. We show how we can tune the hysteron properties and pathways under cyclic compression by the geometric design of these elements and how we can tune the pathways of a given sample by tilting one of the boundaries. Furthermore, we investigate the effect of the coupling of a global shear mode to the hysterons as an example of the interactions between hysteron and non-hysteron degrees of freedom. We hope our work will inspire further studies on designer matter with targeted pathways.Classical theories of dielectric friction make two critical assumptions (i) friction due to van der Waals (vdW) forces is described by hydrodynamic drag and is independent of the ionic charge and (ii) vdW and electrostatic forces are statistically independent. Both assumptions turn out to be incorrect when tested against simulations of anions and cations with varying charge magnitude dissolved in water. Both the vdW and electrostatic components of the force variance scale linearly with the ionic charge squared. The two components are strongly anticorrelated producing simple relations for the total force variance in terms of self-variances. The inverse diffusion constant scales linearly with the charge squared. Solvation asymmetry between cations and anions extends to linear transport coefficients.High harmonic spectra for H2 and H2 + are simulated by solving the time-dependent Kohn-Sham equation in the presence of a strong laser field using an atom-centered Gaussian representation of the density and a complex absorbing potential. The latter serves to mitigate artifacts associated with the finite extent of the basis functions, including spurious reflection of the outgoing electronic wave packet. Interference between the outgoing and reflected waves manifests as peak broadening in the spectrum as well as the appearance of spurious high-energy peaks after the harmonic progression has terminated. We demonstrate that well-resolved spectra can be obtained through the use of an atom-centered absorbing potential. As compared to grid-based algorithms, the present approach is more readily extensible to larger molecules.The gas-phase value of the dissociation energy (D0) is a key parameter employed in both experimental and theoretical descriptions of noncovalent complexes. The D0 data were obtained for a set of mid-sized organic dimers in their global minima which was located using geometry optimizations that applied ample basis sets together with either the conventional second-order Møller-Plesset (MP2) method or several dispersion-corrected density-functional theory (DFT-D) schemes. The harmonic vibrational zero-point (VZP) and deformation energies from the MP2 calculations were combined with electronic energies from the coupled cluster theory with singles, doubles, and iterative triples [CCSD(T)] extrapolated to the complete basis set (CBS) limit to estimate D0 with the aim of inspecting values that were most recently measured, and an analogous comparison was performed using the DFT-D data. In at least one case (namely, for the aniline⋯methane cluster), the D0 estimate that employed the CCSD(T)/CBS energies differed from experiment in the way that could not be explained by a possible deficiency in the VZP contribution. Curiously, one of the DFT-D schemes (namely, the B3LYP-D3/def2-QZVPPD) was able to reproduce all measured D0 values to within 1.0 kJ/mol from experimental error bars. These findings show the need for further measurements and computations of some of the complexes. In order to facilitate such studies, the physical nature of intermolecular interactions in the investigated dimers was analyzed by means of the DFT-based symmetry-adapted perturbation theory.According to Ruedenberg’s classic treatise on the theory of chemical bonding [K. Ruedenberg, Rev. Mod. Phys. 34, 326-376 (1962)], orbital contraction is an integral consequence of covalent bonding. While the concept is clear, its quantification by quantum chemical calculations is not straightforward, except for the simplest of molecules, such as H2 + and H2. This paper proposes a new, yet simple, approach to the problem, utilizing the modified atomic orbital (MAO) method of Ehrhardt and Ahlrichs [Theor. Chim. Acta 68, 231 (1985)]. Through the use of MAOs, which are an atom-centered minimal basis formed from the molecular and atomic density operators, the wave functions of the species of interest are re-expanded, allowing the computation of the kinetic energy (and any other expectation value) of free and bonded fragments. Thus, it is possible to quantify the intra- and interfragment changes in kinetic energy, i.e., the effects of contraction. Computations are reported for a number of diatomic molecules H2, Li2, B2, C2, N2, O2, F2, CO, P2, and Cl2 and the polyatomics CH3-CH3, CH3-SiH3, CH3-OH, and C2H5-C2H5 (where the single bonds between the heavy atoms are studied) as well as dimers of He, Ne, Ar, and the archetypal ionic molecule NaCl. In all cases, it is found that the formation of a covalent bond is accompanied by an increase in the intra-fragment kinetic energy, an indication of orbital contraction and/or deformation.A deep understanding for collective behavior in an active matter system with complex interactions has far-reaching impact in biology. In the present work, we adopt Langevin dynamics simulations to investigate diffusion dynamics and phase separation in an anisotropic active particle system with a tunable biased angle α defined as the deviation between the active force direction and anisotropic orientation. Our results demonstrate that the biased angle can induce super-rotational diffusion dynamics characterized by a power-law relationship between the mean square angle displacement (MSAD) and the time interval Δt in the form of MSAD ∼ Δtβ with β > 1 and also result in non-trivial phase separation kinetics. As activity is dominant, nucleation time shows a non-monotonic dependence on the biased angle. Moreover, there arises a distinct transition of phase separation, from spinodal decomposition without apparent nucleation time to binodal decomposition with prominent nucleation delay. A significant inhibition effect occurs at right and obtuse angles, where the remarkable super-rotational diffusion prevents particle aggregation, leading to a slow nucleation process. check details As active force is competitive to anisotropic interactions, the system is almost homogeneous, while, intriguingly, we observe a re-entrant phase separation as a small acute angle is introduced. The prominent super-rotational diffusion under small angles provides an optimum condition for particle adsorption and cluster growth and, thus, accounts for the re-entrance of phase separation. A consistent scenario for the physical mechanism of our observations is achieved by properly considering the modulation of the biased angle on the interplay between activity and anisotropic interactions.We present a new computational framework to describe polaritons, which treats photons and electrons on the same footing using coupled-cluster theory. As a proof of concept, we study the coupling between the first electronically excited state of carbon monoxide and an optical cavity. In particular, we focus on how the interaction with the photonic mode changes the vibrational spectroscopic signature of the electronic state and how this is affected when tuning the cavity frequency and the light-matter coupling strength. For this purpose, we consider different methodologies and investigate the validity of the Born-Oppenheimer approximation in such situations.Wide ranges of absorbance spectra were measured to elucidate a difference in the antiferro-electric (AF) ordering mechanisms below 50 and 168 K in Cs3H(SeO4)2 and Cs3D(SeO4)2, respectively. Collective excitations due to deuterons successfully observed at 610 cm-1 exhibit a remarkable isotope effect. This indicates that the transfer state in the dimer of Cs3D(SeO4)2 is dominated by a deuteron hopping in contrast to Cs3H(SeO4)2, where a proton hopping makes a tiny contribution compared to a phonon-assisted proton tunneling (PAPT) associated with 440-cm-1 defbend . The fluctuation relevant to the AF ordering in Cs3D(SeO4)2 is not driven by the conventional deuteron hopping but by the phonon-assisted deuteron hopping associated with 310-cm-1 defbend . Consequently, Cs3D(SeO4)2 has a distinct ordering mechanism from Cs3H(SeO4)2, in which quantum fluctuations toward the AF ordering are enhanced through the PAPT associated with the in-phase libration.