-
Broussard Jespersen posted an update 4 days, 6 hours ago
For the sake of completeness, the sequestering capabilities of DMSA-a simple dithiol ligand-toward As(III) are directly compared with those recently emerged from similar analyses reported on monothiol ligands.Lactic acid is a universal metabolite, as well as a growth inhibitor of ethanol producers in Baijiu fermentation. Revealing the mechanism of lactic acid tolerance is essential for the yield of fermented foods. Here, we employed reverse transcription-quantitative polymerase chain reaction to explore the degradation mechanism of lactic acid, based on the coculture of Pichia kudriavzevii and Saccharomyces cerevisiae. Under high lactic acid stress, P. kudriavzevii decreased lactic acid from 40.00 to 35.46 g L-1 within 24 h. Then, S. cerevisiae restored its capacity to degrade lactic acid. Finally, lactic acid decreased to 26.29 g L-1. Coculture significantly enhanced lactic acid consumption compared to the monoculture of P. kudriavzevii (90% higher) or S. cerevisiae (209% higher). We found that lactate catabolism, H+ extrusion, and glycerol transport were the lactic acid tolerance pathways in yeasts. This study reveals the novel acid tolerance mechanisms of microbiota and would provide new strategies for ethanol production under acid stress.A family of pyrene[4,5-d]imidazole derivatives, PyPA, PyPPA, PyPPAC, and PyPAC, with different excited states are successfully developed. Among them, PyPPA and PyPPAC possess hybridized local and charge-transfer (HLCT) state, endowing them with pure blue fluorescence as well as high quantum yields. The nondoped organic light-emitting diode (OLED) based on PyPPA displays Commission Internationale de L’Eclairage coordinates of (0.14, 0.13) and achieves a maximum external quantum efficiency (EQE) of 8.47%, which are among the highest value reported to date for nondoped blue HLCT OLEDs. The nondoped OLED based on PyPPAC exhibits a maximum luminance of 50,046 cd m-2 located in the blue region with CIE coordinates of (0.15, 0.21) and an EQE of 6.74% even when the luminance reached over 10,000 cd m-2. In addition, they both reveal ultimate exciton utilizing efficiencies of nearly 100%. The potential of a blue emitter of PyPPA with an HLCT character for application in white OLED (WOLED) is further tested. The efficient two-color hybrid warm WOLED is successfully achieved, which provides the total EQE, power efficiency, and current efficiency of up to 21.19%, 61.46 lm W-1, and 62.13 cd A-1, respectively. The nondoped blue OLEDs and hybrid WOLEDs present good color stabilities with low efficiency roll-offs. Our results prove that taking advantage of the HLCT state, nondoped blue OLEDs as well as hybrid WOLEDs with high performance could be realized, which have a promising prospect for the displays and lightings in the future.A rapid and sensitive method to detect cardiac troponin I (cTnI) in human blood is critical to the diagnosis and treatment of acute myocardial infarction (AMI). Here, we describe a simple one-step digital immunoassay for single-molecule detection without washing steps. A sample containing cTnI mixed with detection antibody-conjugated gold nanoparticles (AuNPs) is added to a capture antibody-coated sensor surface and the formation of the antibody-cTnI-antibody sandwich is detected by digitally counting the binding of the individual gold nanoparticles to the sensor surface in real time using a bright-field optical imaging setup together with a differential imaging algorithm. The digital immunoassay detects cTnI in undiluted human plasma, which achieves a detection limit of 5.7 ng/L within a detection time of only 10 min, which meets the requirement of current clinical high-sensitivity troponin assay (∼70 ng/L cutoff). We anticipate that the one-step and real-time digital immunoassay can be applied to the detection of other disease biomarkers in blood.Redox flow batteries (RFBs) are promising energy storage candidates for grid deployment of intermittent renewable energy sources such as wind power and solar energy. Various new redox-active materials have been introduced to develop cost-effective and high-power-density next-generation RFBs. Electrochemical kinetics play critical roles in influencing RFB performance, notably the overpotential and cell power density. Thus, determining the kinetic parameters for the employed redox-active species is essential. In this Perspective, we provide the background, guidelines, and limitations for a proposed electrochemical protocol to define the kinetics of redox-active species in RFBs.A photocrosslinkable gelatin methacryloyl (GelMA) hydrogel has been widely examined in regenerative engineering because of its good cell-tissue affinity and degradability in the presence of matrix metalloproteinases. A halloysite aluminosilicate nanotube (HNT) is a known reservoir for the loading and sustained delivery of therapeutics. Here, we formulate injectable chlorhexidine (CHX)-loaded nanotube-modified GelMA hydrogel that is cytocompatible and biodegradable and provides sustained release of CHX for infection ablation while displaying good biocompatibility. The effects of HNTs and CHX on hydrogel degradability and mechanical properties, as well as on the kinetics of CHX release, and on the antimicrobial efficacy against oral pathogens were systematically assessed. Cytocompatibility in stem cells from human exfoliated deciduous teeth and inflammatory response in vivo using a subcutaneous rat model were determined. Our hydrogel system, that is, (CHX)-loaded nanotube-modified GelMA showed minimum localized inflammatory responses, supporting its ability for drug delivery applications. Moreover, we showed that the incorporation of CHX-loaded nanotubes reduces the mechanical properties, increases the swelling ratio, and diminishes the degradation rate of the hydrogels. Importantly, the presence of CHX-loaded nanotubes inhibits bacterial growth with minimal cell toxicity. Our findings provide a new strategy to modify GelMA hydrogel with chlorhexidine-loaded nanotubes for clinical use as an injectable drug delivery strategy for dental infection ablation.The absorption of nonfullerene acceptors (NFAs) at near-infrared (NIR) regions is crucial for obtaining high current densities in organic solar cells (OSCs). Herein, two narrow-band gap NFAs with unfused backbones possessing broad (600-900 nm) and strong absorption are developed by the conjugation of a benzothiadiazole core to halogenated end groups through a cyclopentadithiophene bridge. selleck chemicals Compared with the fluorinated counterpart BCDT-4F, the chlorinated NFA BCDT-4Cl shows stronger J-aggregation and closer molecular packing, leading to an optimized blend morphology when paired with the polymer donor, PBDB-T. Thus, an obvious improvement in external quantum efficiency response was obtained for BCDT-4Cl-based OSCs, presenting a higher efficiency of 12.10% than those (9.65%) based on BCDT-4F. This work provides a design strategy for NIR acceptors in the combination of electron-deficient core and halogenated terminal in unfused backbones, which results in not only fine-tuning the optoelectronic properties but also simplifying the synthetic complexities of molecules.