-
Walls Albertsen posted an update 4 days, 6 hours ago
Tabanid flies (Tabanidae Diptera) are common hematophagous insects known to transmit some pathogens mechanically or biologically to animals; they are widely distributed throughout the world. However, no tabanid-borne viruses, except mechanically transmitted viruses, have been reported to date. In this study, we conducted RNA virome analysis of several human-biting tabanid species in Japan, to discover and characterize viruses associated with tabanids. A novel flavivirus was encountered during the study in the Japanese horse fly, Tabanus rufidens (Bigot, 1887). The virus was detected only in T. rufidens, but not in other tabanid species, and as such was designated Tabanus rufidens flavivirus (TrFV). TrFV could not be isolated using a mammalian cell line and showed a closer phylogenetic relationship to the classical insect-specific flaviviruses (cISFs) rather than the vertebrate-infecting flaviviruses (VIFs), suggesting that it is a novel member of the cISFs. The first discovery of a cISF from Brachycera provides new insight into the evolutionary history and dynamics of flaviviruses.Madagascar is a hotspot of biodiversity, but poverty and population growth provoke a high risk of conflict between food security and biodiversity conservation in this tropical country. Numerous vector-borne diseases, including viral infections, affect public health in Madagascar and a continuous expansion of anthropogenically used areas intensifies contact on the human-wildlife interface. However, data on human and animal pathogens in potential insect vectors is limited. Therefore, we conducted a parasitological and virological survey of 785 adult female mosquitoes between March and May 2016 at the Ankarafantsika National Park in northwestern Madagascar. Screening included Alpha-, Phlebo-, and Flaviviridae and the recently described filarial nematode species, Lemurfilaria lemuris. The predominant mosquito genus was Culex (91%), followed by Mansonia (4.1%), Anopheles (3.4%), and Aedes (0.9%). Viral screening revealed no arboviruses, but an insect-specific flavivirus in two Culex sitiens pools. No pools screened positive for the lemur-specific filarial nematode L. lemuris.Aedes aegypti (Linnaeus, 1762) is the insect vector that transmits several deadly human diseases. Although the egg stage is an important phase of its life cycle, the biology of mosquito egg remains poorly understood. Vismodegib Here, we report our investigations on the chemical factors that induced hatching of Ae. aegypti eggs. Commercial yeast extracts were able to increase egg hatching rate in a dose-dependent manner, with a hatching rate that ranged from approximately 10% with 1 g/liter to 80% with 20 g/liter of yeast extract. Notably, the addition of glutathione, a reducing agent that showed no significant effect on egg hatching by itself, enhanced and stabilized the activity of yeast extract for at least 70 h. Because dissolved oxygen in different treatments was maintained at high levels in a narrow range (92-95%), we proposed that yeast extract contains hatching inducing compound (HIC) which is able to trigger egg hatching independent of dissolved oxygen level. The HIC in yeast extract could prove to be a potential starting point to design an effective tool to forcefully induce mosquito eggs to hatch under unfavorable conditions, functioning as a novel method for vector control.The developmental transition of juvenile salmon from a freshwater resident morph (parr) to a seawater (SW) migratory morph (smolt), known as smoltification, entails a reorganization of gill function to cope with the altered water environment. Recently, we used RNAseq to characterize the breadth of transcriptional change which takes place in the gill in the FW phase of smoltification. This highlighted the importance of extended exposure to short, winter-like photoperiods (SP) followed by a subsequent increase in photoperiod for completion of transcriptional reprogramming in FW and efficient growth following transfer to SW. Here, we extend this analysis to examine the consequences of this photoperiodic history-dependent reprogramming for subsequent gill responses upon exposure to SW. We use RNAseq to analyze gill samples taken from fish raised on the photoperiod regimes we used previously and then challenged by SW exposure for 24 hours. While fish held on constant light (LL) throughout were able to hypo-osmoregulate during a 24 hours SW challenge, the associated gill transcriptional response was highly distinctive from that in fish which had experienced a 7-week period of exposure to SP followed by a return to LL (SPLL) and had consequently acquired the characteristics of fully developed smolts. Fish transferred from LL to SP, and then held on SP for the remainder of the study was unable to hypo-osmoregulate, and the associated gill transcriptional response to SW exposure featured many transcripts apparently regulated by the glucocorticoid stress axis and by the osmo-sensing transcription factor NFAT5. The importance of these pathways for the gill transcriptional response to SW exposure appears to diminish as a consequence of photoperiod mediated induction of the smolt phenotype, presumably reflecting preparatory developmental changes taking place during this process.The N-glycosylation of immunoglobulin G (IgG) affects its structure and function. It has been demonstrated that IgG N-glycosylation patterns are inherited as complex quantitative traits. Genome-wide association studies identified loci harboring genes encoding enzymes directly involved in protein glycosylation as well as loci likely to be involved in regulation of glycosylation biochemical pathways. Many of these loci could be linked to immune functions and risk of inflammatory and autoimmune diseases. The aim of the present study was to discover and replicate new loci associated with IgG N-glycosylation and to investigate possible pleiotropic effects of these loci onto immune function and the risk of inflammatory and autoimmune diseases. We conducted a multivariate genome-wide association analysis of 23 IgG N-glycosylation traits measured in 8090 individuals of European ancestry. The discovery stage was followed up by replication in 3147 people and in silico functional analysis. Our study increased the total number of replicated loci from 22 to 29.