• Kaspersen Krogsgaard posted an update 4 days, 9 hours ago

    With the name of barber surgeon, barbers are initially responsible for small surgical procedures, then for amputations given the epidemics linked to ergotism which led to numerous amputations. By this practice, they will acquire the knowledge of anatomy and the knowledge of the surgery. Apart from this civilian practice of surgery carried out by barber surgeons, the military practice of surgery will appear with the conquests of England and the start of the crusades which will require a more professional organization of surgery.

    After 1371, as only barbers surgeons had some surgical practice, their knowledge surpassed knowledge of the university. This supremacy of the barber surgeon over the surgeons of the university will be demonstrated by Ambroise Paré.

    After 1371, as only barbers surgeons had some surgical practice, their knowledge surpassed knowledge of the university. This supremacy of the barber surgeon over the surgeons of the university will be demonstrated by Ambroise Paré.Recent studies investigating Bdellovibrio spp. have found that although this predator predominantly preys on Gram-negative organisms, under certain conditions (nutrient/prey limitation), it will adapt to survive and grow axenically (without prey) or in the presence of Gram-positive bacterial prey. These advances in the understanding of predatory bacteria have stimulated a renewed interest in these organisms and the potential applications of Bdellovibrio spp. to the benefit of society. Early studies primarily focused on the application of predatory bacteria as “live antibiotics” in the medical field, probiotics in aquaculture and veterinary medicine and their use in agriculture. Additionally, studies have investigated their prevalence in wastewater and environmental sources. However, comprehending that Bdellovibrio spp. may also prey on and target Gram-positive organisms, implies that these predators could specifically be applied for the bioremediation or removal of mixed bacterial communities. Recent studies have also indicated that Bdellovibrio spp. may be useful in controlling food spoilage organisms and subsequently decrease our reliance on food additives. This review will thus highlight recent developments in understanding Bdellovibrio spp. predation strategies and focus on potential new applications of these organisms for water treatment, food preservation, enhancement of industrial processes, and in combination therapies with bacteriophages and/or antibiotics to combat multi-drug resistant organisms.A Gram-positive, aerobic, non-motile, non-spore-forming, short rod-shaped strain, NEAU-LLCT, was isolated from cow dung in Shangzhi City, Heilongjiang Province, Northeast China and identified by a polyphasic taxonomic study. Colonies was light yellow, round, with entire margin. Strain NEAU-LLCT was grown at 15-45 ℃ and pH 6.0-10.0. NaCl concentration ranged from 0 to 5% (W/V). The 16S rRNA gene sequence of NEAU-LLCT showed the high similarities with Microbacterium kyungheense JCM 18735T (98.5%), Microbacterium trichothecenolyticum JCM 1358T (98.3%) and Microbacterium jejuense JCM 18734T (98.2%). The whole-cell sugars were glucose, rhamnose and ribose. The menaquinones contained MK-12 and MK-13. Ornithine, glutamic acid, lysine and a small amount of alanine and glycine were the amino acids in the hydrolyzed products of the cell wall. The major fatty acids were iso-C160, iso-C180, anteiso-C150 and anteiso-C170. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. The genome of NEAU-LLCT was 4,369,375 bp and G + C content is 70.28 mol%. JAK inhibitor A combination of DNA-DNA hybridization result and some phenotypic characteristics demonstrated that strain NEAU-LLCT could be distinguished from its closely related strains. Therefore, the strain NEAU-LLCT was considered to represent a novel species, which was named Microbacterium helvum sp. (Type strain NEAU-LLCT = CCTCC AA 2018026T = JCM 32661T).The forest musk deer, Moschus berezovskii, is a nationally protected species of economic importance in China. However, in captive breeding programmes, they usually die as a result of diarrhoea. In this study, six M. berezovskii were randomly selected and divided into two groups probiotics group (n = 3) and placebo (control) group (n = 3). The two groups were fed a basal diet that included 2 g probiotics (probiotic group) or 2 g whey powder (placebo group) for 30 days. Faecal samples were collected at day 0, 15 and 30 and evaluated for microbial diversity, species richness and metabolic function. Probiotic intervention significantly improved gut health in M. berezovskii by changing the overall community structure of the gut microbiota. Intake of probiotics reduced the relative abundance of pathogenic bacteria such as Escherichia coli and Citrobacter freundii in the intestinal flora and increased the relative abundance of beneficial Bifidobacterium species and other lactic acid bacteria. At the same time, gut microbiota in the probiotics group were involved in regulating degradation of phenylacetic acid and in dTDP-L-rhamnose synthesis; these processes have the potential to enhance immunity in M. berezovskii. This preliminary study revealed the beneficial effects of probiotics on the gut microbiota of M. berezovskii, which the potential to significantly improve the health, wellbeing and economic value of M. berezovskii.Ever since the potential of algae in biotechnology was recognized, models describing the growth of algae inside photobioreactors have been proposed. These models are the basis for the optimization of process conditions and reactor designs. Over the last few decades, models became more and more elaborate with the increase of computational capacity. Thus far, these models have been based on light attenuation due to the absorption and scattering effects of the biomass. This manuscript presents a new way of predicting the apparent growth inside photobioreactors using simple models for enzymatic kinetics to describe the reaction between photons and the photosynthetic unit. The proposed model utilizes an inhibition kinetic formula based on the surrounding biomass to describe the average growth rate of a culture, which is determined by the local light intensities inside the reactor. The result is a mixed-inhibition scheme with multiple inhibition sites. The parameters of the new kinetic equation are replaced by empirical regression functions to correlate their dependency on incident light intensity and reactor size.