-
Lacroix Thiesen posted an update 3 days, 11 hours ago
The proposed ultra-broadband LP11 mode converter with high purity is promising for the application of ultra-broadband mode-division-multiplexing transmission systems.To meet the need for the high-precision contactless measurement of the freeform surface profile during the manufacturing, we propose a high-precision measurement method that combines the laser differential confocal trigger sensor (LDCTS) and the real-time comparison method using reference planes (RCMRP). LDCTS is used to measure the freeform surface under test (FSUT), which enables the high-precision measurement of the surface profile with the large roughness and local inclination. Through the real-time comparisons of the coordinate changes of the reference planes and FSUT, the dominant straightness and rotation errors can be separated based on the error model and thus the spatial motion errors can be significantly reduced along all three axes. Combing these two strategies, we find that the inclination measurement capacity becomes larger than 25° and the repeated measurement accuracy is improved to be better than 10 nm within the horizontal scanning range of 150 mm × 150 mm. Compared with the non-RCMRP method, the repeated measurement accuracy is improved by at least 5 times. We believe the proposed method provides a strategy for the high-precision measurement of freeform surface profile with large local inclination and roughness during different manufacturing periods.With the rapid development of nanofabrication technology and nonlinear optics, the nonlinear detection by nanostructures is highly appreciated. In this paper, we study the second-harmonic generation by a spherical nonlocal plasmonic nanoparticle wrapped with graphene. We develop a simple method for calculating the electric field at second-harmonic frequency and analyze the influence of the nonlocal response of the metal on the second-harmonic. We find that this nanostructure can probe the material’s properties by detecting the radiation intensity of the second-harmonic generation. In addition, the nonlocal response of the plasmonic core can promote the absorption efficiency of second-harmonic generation. Our study may offer a new way for studying the plasmonic quantum effects and nonlinear probing technology and improving the nonlinear conversion efficiency of photonic devices.Terahertz (THz) diffractive optical neural networks (DONNs) highlight a new route toward intelligent THz imaging, where the image capture and classification happen simultaneously. However, the state-of-the-art implementation mostly relies on passive components and thus the functionalities are limited. The reconfigurability can be achieved through spatial light modulators (SLMs), while it is not clear what device specifications are required and how challenging the associated device implementation is. read more Here, we show that a complex-valued modulation with a π/2 phase modulation in an active reflective graphene-plasmonics-based SLM can be employed for realizing the reconfigurability in THz DONNs. By coupling the plasmonic resonance in graphene nanoribbons with the reflected Fabry-Pérot (F-P) mode from a back reflector, we achieve a minor amplitude modulation of large reflection and a substantial π/2 phase modulation. Furthermore, the constructed reconfigurable reflective THz DONNs consisting of designed SLMs demonstrate >94.0% validation accuracy of the MNIST dataset. The results suggest that the relaxation of requirements on the specifications of SLMs should significantly simplify and enable varieties of SLM designs for versatile DONN functionalities.Flat optical elements enable the realization of ultra-thin devices able to either reproduce or overcome the functionalities of standard bulky components. The fabrication of these elements involves the structuration of material surfaces on the light wavelength scale, whose geometry has to be carefully designed to achieve the desired optical functionality. In addition to the limits imposed by lithographic design-performance compromises, their optical behavior cannot be accurately tuned afterward, making them difficult to integrate in dynamic optical systems. Here we show the realization of fully reconfigurable flat varifocal diffractive lens, which can be in-place realized, erased and reshaped directly on the surface of an azopolymer film by an all-optical holographic process. Integrating the lens in the same optical system used as standard refractive microscope, results in a hybrid microscope capable of multi-depth object imaging. Our approach demonstrates that reshapable flat optics can be a valid choice to integrate, or even substitute, modern optical systems for advanced functionalities.The classical optical diffraction limit can be overcome by exploiting the quantum properties of light in several theoretical studies; however, they mostly rely on an entangled light source. Recent experiments have demonstrated that quantum properties are preserved in many fluorophores, which makes it possible to add a new dimension of information for super-resolution fluorescence imaging. Here, we developed a statistical quantum coherence model for fluorescence emitters and proposed a new super-resolution method using fluorescence quantum coherence in fluorescence microscopy. In this study, by exploiting a single-photon avalanche detector (SPAD) array with a time-correlated single-photon-counting technique to perform spatial-temporal photon statistics of fluorescence coherence, the subdiffraction-limited spatial separation of emitters is obtained from the determined coherence. We numerically demonstrate an example of two-photon interference from two common fluorophores using an achievable experimental procedure. Our model provides a bridge between the macroscopic partial coherence theory and the microscopic dephasing and spectral diffusion mechanics of emitters. By fully taking advantage of the spatial-temporal fluctuations of the emitted photons as well as coherence, our quantum-enhanced imaging method has the significant potential to improve the resolution of fluorescence microscopy even when the detected signals are weak.In this paper, the amplified spontaneous emission (ASE) suppression in a 1050 nm fiber laser with a pump-sharing oscillator-amplifier (PSOA) structure is studied theoretically and experimentally. A theoretical model of a fiber laser with a PSOA structure is established. The characteristics of the ASE for the PSOA structure and the pump-independent oscillator-amplifier (PIOA) structure are compared and analyzed. The experimental results show that the ASE can be effectively suppressed by utilizing the PSOA structure, which agree with the simulation results. A 1050 nm high-power narrow-linewidth fiber laser with PSOA structure is demonstrated, in which the gain fiber lengths of the oscillator and amplifier are 1.6 m and 9 m, respectively, to ensure the interconnection of pump power between the oscillator and amplifier. Finally, the maximum output power of 3.1 kW has been achieved, the linewidth is 0.22 nm at 3 dB, the beam quality M2 ≈ 1.33, and the optical signal-to-noise ratio (OSNR) is 45.5 dB.Using a random temporal signal for sample excitation (RATS method) is a new, capable approach to measuring photoluminescence (PL) dynamics. The method can be used in single-point measurement (0D), but also it can be converted to PL decay imaging (2D) using a single-pixel camera configuration. In both cases, the reconstruction of the PL decay and PL snapshot is affected by ubiquitous noise. This article provides a detailed analysis of the noise effect on the RATS method and possible strategies for its suppression. We carried out an extensive set of simulations focusing on the effect of noise introduced through the random excitation signal and the corresponding PL waveform. We show that the PL signal noise level is critical for the method. Furthermore, we analyze the role of acquisition time, where we demonstrate the need for a non-periodic excitation signal. We show that it is beneficial to increase the acquisition time and that increasing the number of measurements in the single-pixel camera configuration has a minimal effect above a certain threshold. Finally, we study the effect of a regularization parameter used in the deconvolution step, and we observe that there is an optimum value set by the noise present in the PL dataset. Our results provide a guideline for optimization of the RATS measurement, but we also study effects generally occurring in PL decay measurements methods relying on the deconvolution step.An 8-beam, diffractive coherent beam combiner is phase controlled by a learning algorithm trained while optical phases drift, using a differential mapping technique. Combined output power is stable to 0.4% with 95% of theoretical maximum efficiency, limited by the diffractive element.Germanium is typically used for solid-state electronics, fiber-optics, and infrared applications, due to its semiconducting behavior at optical and infrared wavelengths. In contrast, here we show that the germanium displays metallic nature and supports propagating surface plasmons in the deep ultraviolet (DUV) wavelengths, that is typically not possible to achieve with conventional plasmonic metals such as gold, silver, and aluminum. We measure the photonic band spectrum and distinguish the plasmonic excitation modes bulk plasmons, surface plasmons, and Cherenkov radiation using a momentum-resolved electron energy loss spectroscopy. The observed spectrum is validated through the macroscopic electrodynamic electron energy loss theory and first-principles density functional theory calculations. In the DUV regime, intraband transitions of valence electrons dominate over the interband transitions, resulting in the observed highly dispersive surface plasmons. We further employ these surface plasmons in germanium to design a DUV radiation source based on the Smith-Purcell effect. Our work opens a new frontier of DUV plasmonics to enable the development of DUV devices such as metasurfaces, detectors, and light sources based on plasmonic germanium thin films.With well-known speckle measurement techniques, the root mean square height as well as the autocorrelation length of isotropic surfaces can be determined quickly and over a large area of interest. Beyond that, the present article studies the speckle-based measurement of anisotropic surfaces. For this purpose, a measurement setup and evaluation algorithm are presented that enable the characterization of unidirectionally anisotropic surfaces machined by grinding. As a result, four measurands are obtained from one speckle image the machining direction, the autocorrelation length perpendicular to the machining direction, as well as two root mean square roughness parameters parallel and perpendicular to the machining direction. The first two measurands are obtained from a two-dimensional fast Fourier transform of the diffraction pattern resulting from the unidirectional tool marks and the latter two by a bidirectional evaluation of the speckle contrast. In addition to measurements on physical reference samples, a spatial light modulator is used to create a large number of surface topographies with known model parameters in order to quantify the measurement uncertainty.