-
Kaspersen Krogsgaard posted an update 2 days, 9 hours ago
Moreover, the hierarchical micro-/nanostructures also endow it with a superhydrophobic surface that has enticing damage resistance, thermal stability, and weatherability. Notably, we demonstrate that the Bio-PRC coatings can be potentially applied in the insulated gate bipolar transistor radiator, for effective temperature conditioning. Meanwhile, the coverage of the dense, super water-repellent top polymer-like layer can prevent the transport of corrosive liquids, ions, and electron transition, illustrating the excellent interdisciplinary applicability of our coatings. This work paves a new way to design next-generation thermal regulation coatings with great potential for applications.The electrochemical N2 reduction reaction (eNRR) represents a carbon-free alternative to the Haber-Bosch process for a sustainable NH3 synthesis powered by renewable energy under ambient conditions. Despite significant efforts to develop catalyst activity and selectivity toward eNRR, an appropriate electrochemical system to obstruct the drawback of low N2 solubility remains broadly unexplored. Here, we demonstrate an electrocatalytic system combining a ruthenium/carbon black gas diffusion electrode (Ru/CB GDE) with a three-compartment flow cell, enabling solid-liquid-gas catalytic interfaces for the highly efficient Ru-catalyzed eNRR. The electrolyte optimization and the Ru/CB GDE development through the hydrophobicity, the Ru/CB loading, and the post-treatment have revealed the crucial contribution of interfacial N2 transportation and local pH environment. The optimized hydrophobic Ru/CB GDE generated excellent eNRR performance, achieving a high NH3 yield rate of 9.9 × 10-10 mol/cm2 s at -0.1 V vs RHE, corresponding to the highest faradaic efficiency of 64.8% and a specific energy efficiency of 40.7%, exceeding the most reported system. This work highlights the critical role of design and optimization of the GDE-flow cell combination and provides a valuable practicable solution to enhance the electrochemical reaction involving gas-phase reactants with low solubility.Liver fibrosis could induce cirrhosis and liver cancer, causing serious damages to liver function and even death. Early diagnosis of fibrosis is extremely requisite for optimizing treatment schedule to improve cure rate. In early-stage fibrosis, overexpressed monoamine oxidase B (MAO-B) can serve as a biomarker, which greatly contributes to the diagnosis of early liver fibrosis. However, there is still a lack of desired strategy to precisely monitor MAO-B in situ. In this work, we established a two-photon fluorescence imaging method for in vivo detection of MAO-B activity counting on a simply prepared probe, BiPhAA. The BiPhAA could be activated by MAO-B within 10 min and fluoresced brightly. To our knowledge, this BiPhAA-based imaging platform for MAO-B is more rapid than other current detection methods. Furthermore, BiPhAA allowed the dynamic observation of endogenous MAO-B level changes in hepatic stellate cells (LX-2). NX-5948 in vitro Through two-photon fluorescence imaging, we observed six times higher fluorescence brightness in the liver tissue of fibrosis mice than that of normal mice, thus successfully distinguishing mice with liver fibrosis from normal mice. Our work offers a simple, fast, and highly sensitive approach for imaging MAO-B in situ and paves a way to the diagnosis of early liver fibrosis with accuracy.Selective oxidation of alkyl-substituted phenols offers efficient access to p-benzoquinones (BQs) that serve as key components for synthesizing biologically active compounds, but rational manufacture of efficient recyclable catalysts for such a reaction remains a severe challenge. Herein, two crystalline 2D polyoxometalate-based coordination polymers (POMCPs), formulated as H3[CuI3(L)3]2[PM12O40]·xH2O (M = Mo, x = 4 for 1; M = W, x = 6 for 2; and HL = 4-(1H-tetazol-5-yl)pyridine), are prepared by a mineralizer-assisted one-step synthesis strategy and explored as heterogeneous catalysts for p-BQs synthesis. Both compounds have been characterized through elemental analysis, EDS analysis, infrared spectroscopy, UV-vis diffuse reflectance spectrum, EPR, XPS, BET, single-crystal, and powder X-ray diffraction. Single-crystal X-ray diffraction analysis indicates that both 1 and 2 exhibit an interesting 2D sheet structure composed of 2-connected Keggin type anions [PM12O40]3- and hexa-nuclear CuI6(HL)6 cluster-based metal-organic chains via Cu···O interactions. When used as catalysts, POMCPs 1 and 2 have excellent catalytic activities in the selective oxidation of substituted phenols to p-BQs with H2O2. Notedly, in the model reaction from 2,3,6-trimethylphenol (TMP) to the vitamin E key intermediate trimethyl-p-benzoquinone (TMBQ), the catalytic activities expressed by turnover frequency (TOF) of 1 and 2 can reach an unprecedented 2400 and 2000 h-1, respectively, at close to 100% TMBQ yield. The truly heterogeneous nature, stability, and structural integrity of both catalysts were ascertained by FTIR, PXRD techniques, and the following cycles. Mechanism studies reveal that both catalysts can involve a dual reaction pathway through a heterolytic oxygen atom transfer mechanism and homolytic radical mechanism. Moreover, the 2D POMCPs with highly accessible bilateral active sites and efficient mass transfer efficiency possess superior catalytic performance to their analogous 3D species.The lithiation of crystalline silicon was studied over several cycles using operando neutron reflectometry over six cycles. A thin layer of aluminum oxide was employed as an artificial coating on the silicon to suppress the solid electrolyte interphase (SEI) layer-related aging effects. Initially, the artificial SEI prevented side effects but led to increased lithium trapping. This layer degraded after two cycles, followed by side reactions, which decrease the coulombic efficiency. No hint for electrode fracturization was found even though the lithiation depth exceeded 1 μm. Two distinct zones with high and low lithium concentrations were found, initially separated by a sharp interface, which broadens with cycling. The correlation of the reflectometry results with the electrochemical current showed the lithium fraction that is lithiated in the silicon and the lithium consumed in side reactions. Also, neutron reflectometry was used to quantify the amount of lithium that remained inside of the silicon. Additional electrochemical impedance spectroscopy was used to gain insights into the electrical properties of the sample via fitting to an equivalent circuit.