• Knowles Kilgore posted an update 2 days, 11 hours ago

    This study assesses the technological, environmental and economic feasibility of biodrying to valorise cellulosic sludge as a renewable energy source. Specifically, three different aeration strategies were compared in terms of biodrying performance, energetic consumption, gaseous emissions, quality of end-products and techno-economic analysis. These strategies were based on different combinations of convective drying with biogenic heat produced. Two innovative biodrying performance indicators (Energetic Biodrying Index and Biodrying Performance Index) were proposed to better assess the initial and operational conditions that favour the maximum energy process efficiency and the highest end-product quality. The end-products obtained consistently presented moisture contents below 40% and lower heating values above 9.4 MJ·kg-1. However, the best values achieved were 32.6% and 10.4 MJ·kg-1 for moisture content and lower heating value, respectively. Low N2O and CH4 emissions confirmed the effective aeration of all three strategies carried out, while NH4 and tVOCs were related either to temperature or biological phenomena. A techno-economic analysis proved the economic viability and attractiveness of the biodrying technology for cellulosic sludge in all the strategies applied.Onion production generates abundant waste with high contents of bioactive compounds. These might have several beneficial functional properties for fortification of foods. To understand the variety and potential for further use, we examined various parts of the plants (edible/inedible waste/outer skin of onion), as well as extraction in water/ethanol and by shaking/sonication. Crenolanib ic50 Quercetin content and antioxidant capacity were initially determined for extracts of edible and waste parts of red, yellow and white onions, and red shallots. Ethanol extracts of the waste fraction had the highest quercetin content and antioxidant capacity. Except white onion, which contained no quercetin, the dried waste ethanol extracts contained up to 15 mg quercetin g-1 and had an antioxidant capacity of nearly 40 mg Trolox equivalents g-1. Furthermore, the dried skin ethanol extract of yellow onion, which is commercially the most available fraction, contained 8 mg quercetin g-1, with antioxidant capacity of 25 mg Trolox equivalents g-1 and high antimicrobial activity. Dried yellow onion skin showed good stability for the quercetin content under various storage conditions (4, 25, 37, 40 °C; dark/light; dry/moist air/in water). Bacteria, bacterial spores, yeast and mould counts remained unchanged for dried onion skin over 5 days under storage conditions that can promote food spoilage, indicating exceptional microbial stability. Finally, two different applications are demonstrated for dried yellow onion skin tablets for home use (tablets as more convenient form of storage and for simple dosing in cooking), and a stabilisation additive (prolonged shelf-life of olive oil). Both represent efficient and straightforward approaches through waste prevention and food fortification.Volatile organic compounds (VOCs) become concerned pollutants in landfill gases, and their composition and concentration varied significantly during waste decomposition. Many environmental factors are known to affect VOC emissions, while the effect of indigenous bacteria in wastes on VOC production remains elusive. In this study, a simplified anaerobic degradation experiment, with the single substrate and the purified bacteria from a landfill, was set up to measure the degradation process and the dynamic changes of VOCs. The experiment excluded the abiotic factors for VOC variation. The two isolated bacteria, identified as Sporanaerobacter acetigenes and Clostridium sporogenes, could anaerobically ferment amino acids by Stickland reaction. They produced 51 and 57 species of VOCs in the experiment, respectively. The concentration changes of VOCs over bacterial growth and fermentation were clustered into four types by principal component analysis three profiles were regular, similar to the variation of nitrate, hydrogen sulfide, and the major fermentation products (carbon dioxide, ammonium, and volatile organic acids), respectively; while one profile was unique to any degradation indicator. The various concentration profiles indicated different origins for VOCs, possibly from the extracellular environment, fermentation, and secondary reactions. The findings provide insights into the understanding of VOC diversity and variability during waste decomposition.The absence of sound sampling procedures and statistical analyses to estimate solid waste generation in many developing countries has resulted in incomplete historical records of waste quantity and composition. Data is often arbitrarily aggregated or disaggregated as a function of waste generators to obtain results at the desired spatial level of analysis. Inference fallacies arising from the generalization or individualization of results are almost never considered. In this paper, Panama, one of the fastest-growing developing countries, was used as a case-study to review the main methodological approaches to estimate solid waste generation per capita per day, and at different hierarchical levels (from households to the country). The solid waste generation intensity indicator is used by the Panamanian waste management authority to run the waste management system. It was also the main parameter employed by local and foreign companies to estimate solid waste generation in Panama between 2001 and 2008. The methodological approaches used by these companies were mathematically formalized and classified as per the expressions suggested by Subramanian et al. (2009). Seven inference fallacies (ecological, individualistic, stage, floating population, linear forecasting, average population and mixed spatial levels) were identified and allocated to the studies. Foreign companies committed three of the seven inference fallacies, while one was committed by the local entity. Endogenous knowledge played an important role in these studies to avoid spatial levels mismatch and multilevel measurements appear to produce more reliable information than studies obtained via other means.