-
May Rodriquez posted an update 2 days, 9 hours ago
Our findings suggest that DENV-2 was the major serotype causing the 2019 massive outbreak in Nepal. This information will help in disease control programs to understand the molecular epidemiology and its changing trend.
Our findings suggest that DENV-2 was the major serotype causing the 2019 massive outbreak in Nepal. This information will help in disease control programs to understand the molecular epidemiology and its changing trend.Histone lysine demethylases (KDMs) play a vital role in regulating chromatin dynamics and transcription. KDM proteins are given modular activities by its sequence motifs with obvious roles division, which endow the complex and diverse functions. In our review, according to functional features, we classify sequence motifs into four classes catalytic motifs, targeting motifs, regulatory motifs and potential motifs. JmjC, as the main catalytic motif, combines to Fe2+ and α-ketoglutarate by residues H-D/E-H and S-N-N/Y-K-N/Y-T/S. Targeting motifs make catalytic motifs recognize specific methylated lysines, such as PHD that helps KDM5 to demethylate H3K4me3. Regulatory motifs consist of a functional network. selleck For example, NLS, Ser-rich, TPR and JmjN motifs regulate the nuclear localization. And interactions through the CW-type-C4H2C2-SWIRM are necessary to the demethylase activity of KDM1B. Additionally, many conservative domains that have potential functions but no deep exploration are reviewed for the first time. These conservative domains are usually amino acid-rich regions, which have great research value. The arrangements of four types of sequence motifs generate that KDM proteins diversify toward modular activities and biological functions. Finally, we draw a blueprint of functional mechanisms to discuss the modular activity of KDMs.Topologically associated domains (TADs) are spatial and functional units of metazoan chromatin structure. Interpretation of the interplay between regulatory factors and chromatin structure within TADs is crucial to understand the spatial and temporal regulation of gene expression. However, a computational metric for the sensitive characterization of TAD regulatory landscape is lacking. Here, we present the spatial density of open chromatin (SDOC) metric as a quantitative measurement of intra-TAD chromatin state and structure. SDOC sensitively reflects epigenetic properties and gene transcriptional activity in TADs. During mouse T-cell development, we found that TADs with decreased SDOC are enriched in repressed developmental genes, and the joint effect of SDOC-decreasing and TAD clustering corresponds to the highest level of gene repression. In addition, we revealed a pervasive preference for TADs with similar SDOC to interact with each other, which may reflect the principle of chromatin organization.Ephrin B2 is critical for endochondral bone development. In this study, we investigated its role in fracture repair by deleting ephrin B2 in type II collagen (Col.2) expressing cells. We used a nonstable tibia fracture model to evaluate fracture repair at 3 sites intramembranous bone formation, endochondral bone formation, and intramedullary bone formation. We observed that during fracture repair, deletion of ephrin B2 impaired periosteal stem cell activation, inhibited their proliferation, decreased their survival, and blocked their differentiation into osteoblasts and chondrocytes. In addition, deletion of ephrin B2 decreased vascular endothelial growth factor production as well as vascular invasion into the fracture site. These changes led to reduced cartilage to bone conversion in the callus with decreased new bone formation, resulting in impaired fracture repair. Our data indicate that ephrin B2 in Col2-expressing cells is a critical regulator of fracture repair, pointing to a new and potentially targetable mechanism to enhance fracture repair.
Social engagement, including participation in group activities, supports older adults’ mental and physical health. However, many residents of assisted living facilities do not participate in their facility’s programmed group activities. Explaining residents’ attendance at group activities is complex; attendance is associated with a confluence of individual-level and contextual factors. The aim of this study was to assess the effects of multi-level factors on attendance, including residents’ proximity to activity location and the potential for one resident’s attendance to depend on other residents’ attendance.
We used bipartite random graph models (ERGMs) to examine the attendance of 35 residents at 563 programmed group activities. We simultaneously modeled the effects of the geospatial distance from a resident’s apartment to the activity and the tendency for residents to attend activities with similar groups of other residents (i.e., shared attendance) on the likelihood of attendance, while controlling focognize. We recommend that proximity to activities and social contextual factors be considered in future examinations of attendance at group activities.Angiogenesis is a physiological process for endometrial regeneration in the menstrual cycle and remodeling during pregnancy. Endogenous hydrogen sulfide (H2S), produced by cystathionine-β synthase (CBS) and cystathionine-γ lyase (CSE), is a potent proangiogenic factor; yet, whether the H2S system is expressed in the endometrium and whether H2S plays a role in endometrial angiogenesis are unknown. This study was to test whether estrogens stimulate endometrial H2S biosynthesis to promote endometrial microvascular endothelial cell (EMEC) angiogenesis. CBS messenger RNA/protein and H2S production significantly differed among endometria from postmenopausal (POM), premenopausal secretory (sPRM), and proliferative (pPRM) nonpregnant (NP) and pregnant (Preg) women (P less then .05) in a rank order of POM approximately equal to sPRM is less than pPRM is less than Preg, positively correlating with angiogenesis indices and endogenous estrogens and with no difference in CSE expression. CBS and CSE proteins were localized to stroma, glands, and vessels in endometrium, and greater stromal CBS protein was observed in the pPRM and Preg states. Estradiol-17β (E2) (but not progesterone) stimulated CBS (but not CSE) expression and H2S production in pPRM endometrial stromal cells (ESCs) in vitro, which were attenuated by ICI 182 780. The H2S donor sodium hydrosulfide promoted in vitro EMEC angiogenesis. Co-culture with sPRM, pPRM, and Preg ESCs all stimulated EMEC migration with a rank order of sPRM less than pPRM approximately equal to Preg. CBS (but not CSE) inhibition attenuated ESC-stimulated EMEC migration. E2 did not affect EMEC migration but potentiated ESC-stimulated EMEC migration. Altogether, estrogens stimulate specific receptor-dependent stromal CBS-H2S production to promote endometrial EMEC angiogenesis in women.