-
Bagger Akhtar posted an update 2 days, 10 hours ago
According to published data, radiomics features differ between lesions of refractory/relapsing HL patients from those of long-term responders. However, several methodological aspects have not been elucidated yet.
The study aimed at setting up a methodological framework in radiomics applications in Hodgkin’s lymphoma (HL), especially at (a) developing a novel feature selection approach, (b) evaluating radiomic intra-patient lesions’ similarity, and (c) classifying relapsing refractory (R/R) vs non-(R/R) patients.
We retrospectively included 85 patients (malefemale = 5233; median age 35 years, range 19-74). LIFEx (www.lifexsoft.org) was used for [
F]FDG-PET/CT segmentation and feature extraction. Features were a-priori selected if they were highly correlated or uncorrelated to the volume. Principal component analysis-transformed features were used to build the fingerprints that were tested to assess lesions’ similarity, using the silhouette. For intra-patient similarity analysis, we used patients having ysis was developed, and it allowed to demonstrate that HL lesions were not homogeneous within patients in terms of radiomics signature. Therefore, a random target lesion selection should not be adopted for radiomics applications. Moreover, the classifier to predict R/R vs non-R/R performed the best when all the lesions were used.This study aimed to optimize the size of capsule-shaped 3D-printed devices (CPD) using an experimental design by the response surface methodology to provide a gastroretentive drug delivery system (GRDDS) with optimal floating time. The CPD was fabricated using a fused deposition modeling (FDM) 3D printer. The central composite design was employed for the optimization of the devices. The morphology of the CPD was observed using a digital microscope and scanning electron microscope (SEM). The in vitro floating time and drug release were evaluated using a USP dissolution apparatus II. Appropriate total floating time (TFT) of the devices (more than 3 h) was obtained with the device’s body, cap, and bottom thickness of 1.2, 1.8, and 2.9 mm, respectively. The release kinetics of the drug from the devices fitted well with zero-order kinetics. In conclusion, the optimization of CPD for GRDDS using the experimental design provided the devices with desirable floating time and ideal drug release characteristics.
Novel reconstruction algorithms, such as xSPECT Bone, are gaining more and more importance in Nuclear Medicine. 1-Naphthyl PP1 manufacturer With xSPECT Bone, the reconstructed emission image is enhanced by the information obtained in the corresponding CT image. The CT defines tissue classes according to the Hounsfield units. In the iterative reconstruction, each tissue class is handled separately in the forward projection step, and all together in the back projection step. As a consequence, xSPECT Bone reconstruction generates images with improved boundary delineation and better anatomic representation of tracer activity. Applying this technique, however, showed that artefacts may occur, when no uptake regions, like metal implants, exhibit fictitious uniform tracer uptake. Due to limitations in spatial resolution in gamma cameras, the xSPECT Bone reconstructed image resulted in spill-out activity from surrounding high uptake region being uniformly distributed over the metal implants. This new technology of xSPECT Bone reconstruction itaneous analysis of conventionally reconstructed SPECT images (for Siemens the Flash3D reconstruction) helps to avoid misinterpretation of potential artefacts introduced by xSPECT Bone reconstruction.
While xSPECT Bone reconstruction algorithm significantly improves image quality for the diagnosis of bone and joint disorders with SPECT/CT, specific “shining metal artefacts” caused by the xSPECT Bone have to be recognized in order to avoid image misinterpretation suggesting metallic implant loosening or possible infection. The simultaneous analysis of conventionally reconstructed SPECT images (for Siemens the Flash3D reconstruction) helps to avoid misinterpretation of potential artefacts introduced by xSPECT Bone reconstruction.
Preclinical imaging is still seen as a new field, and its recognition as a specific topic occurring only about 20 years ago. Nuclear medicine technologists (NMTs) and radiographers’ skills covering technical, anatomical and clinical fields can be highly beneficial to preclinical imaging research centres many tasks and knowledge are complementary between clinics and preclinical laboratories. Our goal is to reach a consensus on the required set of competencies needed to translate the work of NMTs and radiographers from the clinic to the preclinical laboratory, particularly in regard to multimodal imaging.
Currently, all imaging modalities used in clinical routine (ultrasound, CT, MRI, PET, SPECT, radiographs) are available, using specific architectures allowing for the spatial resolution and sensitivity needed for small rodents (which are the most commonly used species in research). Ideally, a preclinical laboratory should produce images/examinations at a high throughput in order to meet the statistical expt of skills, knowledge and competencies were defined to cover the whole set of duties and tasks deliverable to an NMT or radiographer working in a preclinical laboratory. One of the key responsibilities of the NMT or radiographer is related to compliance on animal care and welfare when undertaking any animal procedures, including imaging.
We believe that NMTs and radiographers’ skills match perfectly with the requirements of a preclinical imaging lab, and that they could be considered a keystone of such an organization in the future. Moreover, some evidence has also shown that an experienced NMT or radiographer in this sector can take on roles as research investigators.
We believe that NMTs and radiographers’ skills match perfectly with the requirements of a preclinical imaging lab, and that they could be considered a keystone of such an organization in the future. Moreover, some evidence has also shown that an experienced NMT or radiographer in this sector can take on roles as research investigators.