• Pagh Suhr posted an update 1 day, 9 hours ago

    The intensity of sucrose (its perceived concentration) and its palatability (positive hedonic valence associated with ingestion) are two taste attributes that increase its attractiveness and overconsumption. Although both sensory attributes covary, in that increases in sucrose concentration leads to similar increases in its palatability, this covariation does not imply that they are part of the same process or whether they represent separate processes. Both these possibilities are considered in the literature. For this reason, we tested whether sucrose’s perceived intensity could be separated from its hedonically positive palatability. To address this issue, rats were trained in a sucrose intensity task to report the perceived intensity of a range of sucrose concentrations before and after its palatability was changed using a conditioned taste aversion (CTA) protocol. We found that the subjects’ performance remained essentially unchanged, although its palatability was changed from hedonically positive to negative. Overall, these data demonstrate that sucrose’s perceived intensity and its positive palatability can be dissociated, meaning that changes of one taste attribute render the other mostly unaffected. Thus, the intensity attribute is sufficient to inform the perceptual judgments of sucrose’s concentrations.In plants, 22-nucleotide small RNAs trigger the production of secondary small interfering RNAs (siRNAs) and enhance silencing. DICER-LIKE2 (DCL2)-dependent 22-nucleotide siRNAs are rare in Arabidopsis (Arabidopsis thaliana) and are thought to function mainly during viral infection; by contrast, these siRNAs are abundant in many crops such as soybean (Glycine max) and maize (Zea mays). Here, we studied soybean 22-nucleotide siRNAs by applying CRISPR-Cas9 to simultaneously knock out the two copies of soybean DCL2, GmDCL2a and GmDCL2b, in the Tianlong1 cultivar. Small RNA sequencing revealed that most 22-nucleotide siRNAs are derived from long inverted repeats (LIRs) and disappeared in the Gmdcl2a/2b double mutant. De novo assembly of a Tianlong1 reference genome and transcriptome profiling identified an intronic LIR formed by the chalcone synthase (CHS) genes CHS1 and CHS3 This LIR is the source of primary 22-nucleotide siRNAs that target other CHS genes and trigger the production of secondary 21-nucleotide siRNAs. Disruption of this process in Gmdcl2a/2b mutants substantially increased CHS mRNA levels in the seed coat, thus changing the coat color from yellow to brown. Our results demonstrated that endogenous LIR-derived transcripts in soybean are predominantly processed by GmDCL2 into 22-nucleotide siRNAs and uncovered a role for DCL2 in regulating natural traits.Transcription factors that contain a homeodomain DNA-binding domain have crucial functions in most aspects of cellular function and embryonic development in both animals and plants. Hmx proteins are a subfamily of NK homeodomain-containing proteins that have fundamental roles in development of sensory structures such as the eye and the ear. However, Hmx functions in spinal cord development have not been analyzed. Here, we show that zebrafish (Danio rerio) hmx2 and hmx3a are coexpressed in spinal dI2 and V1 interneurons, whereas hmx3b, hmx1, and hmx4 are not expressed in spinal cord. Using mutational analyses, we demonstrate that, in addition to its previously reported role in ear development, hmx3a is required for correct specification of a subset of spinal interneuron neurotransmitter phenotypes, as well as correct lateral line progression and survival to adulthood. Surprisingly, despite similar expression patterns of hmx2 and hmx3a during embryonic development, zebrafish hmx2 mutants are viable and have no obviously abnormal phenotypes in sensory structures or neurons that require hmx3a In addition, embryos homozygous for deletions of both hmx2 and hmx3a have identical phenotypes to severe hmx3a single mutants. However, mutating hmx2 in hypomorphic hmx3a mutants that usually develop normally, results in abnormal ear and lateral line phenotypes. This suggests that while hmx2 cannot compensate for loss of hmx3a, it does function in these developmental processes, although to a much lesser extent than hmx3a More surprisingly, our mutational analyses suggest that Hmx3a may not require its homeodomain DNA-binding domain for its roles in viability or embryonic development.COVID-19 has posed an extraordinary burden on health and the economy worldwide. Patients with cardiovascular diseases are more likely to have severe illness due to COVID-19 and are at increased risk for complications and mortality. We performed a narrative literature review to assess the burden of COVID-19 and cardiovascular morbidity and mortality. Myocardial injury has been reported in 20%-30% of patients hospitalized due to COVID-19 and is associated with a worse prognosis and high mortality (~50%-60%). Proposed mechanisms of myocardial injury include inflammation within the myocardium (due to direct viral infection or cytokine storm), endotheliitis, coronary vasculitis, myocarditis, demand ischemia, plaque destabilization and right ventricular failure. The right ventricle is particularly vulnerable to injury and failure in COVID-19-infected patients, given the hypoxic pulmonary vasoconstriction, pulmonary microthrombi or pulmonary embolism. Echocardiography is an effective and accessible tool to evaluate left and right ventricular functions and risk stratify patients with COVID-19 infection. Cardiac MRI has detected and characterized myocardial injury, with changes compatible with other inflammatory cardiomyopathies. The long-term consequences of these inflammatory changes are unknown, but accumulating data will provide insight regarding the longitudinal impact of COVID-19 infection on cardiovascular morbidity and mortality.It has been suggested that immune-inflammatory processes might be involved in the etiopathogenesis of schizophrenia. Since growing evidence indicates that adipokines strongly modulate the course of immune response and inflammatory processes, it is currently suggested the contribution of those factors in the etiology of schizophrenia as well. The aim of this study was to determine the serum levels of 4 adipokines-apelin, resistin, chemerin, and omentin-in patients with schizophrenia as compared with healthy subjects. Fifty-seven adult patients with schizophrenia and 31 healthy volunteers were included in this prospective study. ELISA was used to measure the serum concentration of resistin, apelin, omentin-1, and chemerin. No difference in the mean concentration of resistin (p=0.20) and chemerin (p=0.30) between patients with schizophrenia and the healthy group was observed. Resveratrol molecular weight Apelin concentration was significantly (p=0.004) lower in patients with schizophrenia as compared with controls. A significant difference in apelin level between men with schizophrenia and control group (p=0.