-
Duelund Porterfield posted an update 1 day, 9 hours ago
Fitness indicators were compared between groups by analysis of covariance, and PFA and chronological age (CA) by paired t-tests. Results The mean ages (±standard deviation) of the stoma and control groups were 74.1 ± 7.9 and 73.5 ± 7.1 years, respectively. Colon cancer survivors with stomas had poorer lower limb muscular strength, endurance, and flexibility than controls. In the stoma group, the marginal mean (±standard error) PFA was calculated to be 82.5 ± 3.7 years, significantly higher than the CA and PFA of the control group (69.6 ± 3.9 years). Conclusions Colon cancer survivors with stomas have lower physical fitness levels than healthy adults, with apparent deficits in lower limb flexibility, muscular strength, and endurance. Our findings demonstrated the need for exercise interventions in this population, focusing on these dimensions of fitness. However, our results should be corroborated by means of a larger-scale comparison in future studies.The protective effects of chronic moderate exercise-mediated autophagy include the prevention and treatment of several diseases and the extension of lifespan. In addition, physical exercise may impair cellular structures, requiring the action of the autophagy mechanism for clearance and renovation of damaged cellular components. For the first time, we investigated the adaptations on basal autophagy flux in vivo in mice’s liver, heart, and skeletal muscle tissues submitted to four different chronic exercise models endurance, resistance, concurrent, and overtraining. Measuring the autophagy flux in vivo is crucial to access the functionality of the autophagy pathway since changes in this pathway can occur in more than five steps. Moreover, the responses of metabolic, performance, and functional parameters, as well as genes and proteins related to the autophagy pathway, were addressed. In summary, the regular exercise models exhibited normal/enhanced adaptations with reduced autophagy-related proteins in all tissues. On the other hand, the overtrained group presented higher expression of Sqstm1 and Bnip3 with negative morphological and physical performance adaptations for the liver and heart, respectively. The groups showed different adaptions in autophagy flux in skeletal muscle, suggesting the activation or inhibition of basal autophagy may not always be related to improvement or impairment of performance.Biosensors are the core elements for obtaining significant physiological information from living organisms. To better sense life information, flexible biosensors and implantable sensors that are highly compatible with organisms are favored by researchers. Moreover, materials for preparing a new generation of flexible sensors have also received attention. Liquid metal is a liquid-state metallic material with a low melting point at or around room temperature. Owing to its high electrical conductivity, low toxicity, and superior fluidity, liquid metal is emerging as a highly desirable candidate in biosensors. This paper is dedicated to reviewing state-of-the-art applications in biosensors that are expounded from seven aspects, including pressure sensor, strain sensor, gas sensor, temperature sensor, electrical sensor, optical sensor, and multifunctional sensor, respectively. The fundamental scientific and technological challenges lying behind these recommendations are outlined. Finally, the perspective of liquid metal-based biosensors is present, which stimulates the upcoming design of biosensors.The rapid sensing of drug compounds has traditionally relied on antibodies, enzymes and electrochemical reactions. These technologies can frequently produce false positives/negatives and require specific conditions to operate. Akin to antibodies, molecularly imprinted polymers (MIPs) are a more robust synthetic alternative with the ability to bind a target molecule with an affinity comparable to that of its natural counterparts. With this in mind, the research presented in this article introduces a facile MIP-based dye displacement assay for the detection of (±) amphetamine in urine. The selective nature of MIPs coupled with a displaceable dye enables the resulting low-cost assay to rapidly produce a clear visual confirmation of a target’s presence, offering huge commercial potential. The following manuscript characterizes the proposed assay, drawing attention to various facets of the sensor design and optimization. To this end, synthesis of a MIP tailored towards amphetamine is described, scrutinizing the composition and selectivity (ibuprofen, naproxen, 2-methoxphenidine, quetiapine) of the reported synthetic receptor. Dye selection for the development of the displacement assay follows, proceeded by optimization of the displacement process by investigating the time taken and the amount of MIP powder required for optimum displacement. An optimized dose-response curve is then presented, introducing (±) amphetamine hydrochloride (0.01-1 mg mL-1) to the engineered sensor and determining the limit of detection (LoD). The research culminates in the assay being used for the analysis of spiked urine samples (amphetamine, ibuprofen, naproxen, 2-methoxphenidine, quetiapine, bupropion, pheniramine, bromopheniramine) and evaluating its potential as a low-cost, rapid and selective method of analysis.Bioactive glass F18 (BGF18), a glass containing SiO2-Na2O-K2O-MgO-CaO-P2O5, is highly effective as an osseointegration buster agent when applied as a coating in titanium implants. Biocompatibility tests using this biomaterial exhibited positive results; however, its antimicrobial activity is still under investigation. In this study we evaluated biofilm formation and expression of virulence-factor-related genes in Candida albicans, Staphylococcus epidermidis, and Pseudomonas aeruginosa grown on surfaces of titanium and titanium coated with BGF18. C. see more albicans, S. epidermidis, and P. aeruginosa biofilms were grown on specimens for 8, 24, and 48 h. After each interval, the pH was measured and the colony-forming units were counted for the biofilm recovery rates. In parallel, quantitative real-time polymerase chain reactions were carried out to verify the expression of virulence-factor-related genes. Our results showed that pH changes of the culture in contact with the bioactive glass were merely observed. Reduction in biofilm formation was not observed at any of the studied time.