• Albright Drejer posted an update 6 hours, 5 minutes ago

    The traditional medicine trials category majorly comprised Ayurveda (n=45), followed by homeopathy (n=14) and others (n=8) from Yoga, Siddha and Unani. Among the traditional medicine category, 31 trials were prophylactic and 36 were therapeutic, mostly conducted on asymptomatic or mild-to-moderate COVID-19 patients. This review would showcase the research being conducted on COVID-19 in the country and highlight the research gaps to steer further studies.Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of fatalities globally since its origin in November 2019. The SARS-CoV-2 shares 79 and 50 per cent genome similarity with its predecessors, severe SARS-CoV and Middle East respiratory syndrome (MERS) coronavirus, all belonging to the same genus, Betacoronavirus. This relatively new virus has stymied the effective control of COVID-19 pandemic and caused huge social and economic impact worldwide. The FDA-approved drugs were re-purposed to reduce the number of fatalities caused by SARS-CoV-2. Staurosporine However, controversy surrounds about the efficacy of these re-purposed antiviral drugs against SARS-CoV-2.This necessitates the identification of new drug targets for SARS-CoV-2. Hence, the development of pre-clinical animal model is warranted. Such animal models may help us gain better understanding of the pathophysiology of SARS-CoV-2 infection and will be effective tools for the evaluation and licensure of therapeutic strategies against SARS-CoV-2. This review provides a summary of the attempts made till to develop a suitable animal model to understand pathophysiology and effectiveness of therapeutic agents against SARS-CoV-2.The recent outbreak of coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization on March 11, 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, primarily involves the respiratory system with viral pneumonia as a predominant manifestation. In addition, SARS-CoV-2 has various cardiovascular manifestations which increase morbidity and mortality in COVID-19. Patients with underlying cardiovascular diseases and conventional cardiovascular risk factors are predisposed for COVID-19 with worse prognosis. The possible mechanisms of cardiovascular injury are endothelial dysfunction, diffuse microangiopathy with thrombosis and increased angiotensin II levels. Hyperinflammation in the myocardium can result in acute coronary syndrome, myocarditis, heart failure, cardiac arrhythmias and sudden death. The high level of cardiac troponins and natriuretic peptides in the early course of COVID-19 reflects an acute myocardial injury. The complex association between COVID-19 and cardiovascular manifestations requires an in-depth understanding for appropriate management of these patients. Till the time a specific antiviral drug is available for COVID-19, treatment remains symptomatic. This review provides information on the cardiovascular risk factors and cardiovascular manifestations of COVID-19.Hydrogen sulfide (H2S) is recognized to be a novel mediator after carbon monoxide and nitric oxide in the organism. It can be produced in various mammalian tissues and exert many physiological effects in many systems including the cardiovascular system. A great amount of recent studies have demonstrated that endogenous H2S and exogenous H2S-releasing compounds (such as NaHS, Na2S, and GYY4137) provide protection in many cardiovascular diseases, such as ischemia/reperfusion injury, heart failure, cardiac hypertrophy, and atherosclerosis. In recent years, many mechanisms have been proposed and verified the protective role exhibited by H2S against myocardial ischemia/reperfusion injury, and this review is to demonstrate the protective role of exogenous and endogenous H2S on myocardial ischemia/reperfusion injury.Hyperbaric oxygen therapy, intermittent breathing of 100% oxygen at a pressure upper than sea level, has been shown to be some of the neuroprotective effects and used therapeutically in a wide range of neurological disorders. This review summarizes current knowledge about the neuroprotective effects of hyperbaric oxygen therapy with their molecular mechanisms in different models of neurological disorders.Inflammatory bowel disease is a group of chronic recurrent diseases in the digestive tract, including ulcerative colitis and Crohn’s disease. Over the past few decades, the treatment of IBD has made great progress but there is still a lot of room for improvement. Hyperbaric oxygen therapy (HBOT) was defined as the therapeutic effect of inhaling 100% oxygen higher than one atmosphere and reported to be used in stroke, decompression sickness and wound healing. Since several authors reported the role of HBOT as an adjunct to conventional medical treatment in patients with refractory IBD, the relevant research has shown an increasing trend in recent years. Clinical and experimental studies have revealed that HBOT may exert its therapeutic effect by inhibiting inflammation and strengthening the antioxidant system, promoting the differentiation of colonic stem cells and recruiting cells involved in repair. The purpose of this review is to summarize the past clinical and experimental studies and to understand the impact of HBOT in the treatment of IBD more deeply. In addition, we also hope to provide some ideas for future clinical and research work.Hydrogen molecules have attracted attention as a new antioxidant, but are left to be confirmedly verified whether the oral administration is highly safe or not, concurrently with retention of abundant hydrogen. When electrolysis was performed for 10 minutes using a direct-current electrolytic hydrogen-water generating bottle with tap water, “residual free chlorine” concurrently upon the production of molecular hydrogen (444 μg/L) could be appreciably decreased from 0.18 mg/L to 0.12 mg/L as quantified by a N,N-diethyl-p-phenylenediamine-dye colorimetric method. Moreover, the total chlorine concentration (residual bound chlorine plus free chlorine) was estimated to be decreased from 0.17 mg/L to 0.11 mg/L. Although a merit of electrolytic hydrogen-generating bottles exists in electrolysis for periods as short as 10 minutes, the 30-minute electrolysis brought about the more abundant hydrogen (479 μg/L) together with an oxidation-reduction potential of -245 mV; even upon this long-term electrolysis, the gross amounts of chlorine, hypochlorous acid and chloramine were shown not to be increased (0.