-
Gill McCallum posted an update 10 hours, 15 minutes ago
Antibacterial polymer membranes have been widely used in many fields of our daily life. In this study, porous PA6 membrane with ZnO nanoparticles attaching on to the surface of inner pore walls is prepared. Firstly, SMA (styrene maleic anhydride copolymer) is used to graft onto the surface of ZnO nanoparticle in DMF (dimethylformamide). Then the pre-treated ZnO nanoparticles (ZnO-SMA) are added into SEBS (Styrene-ethylene-butylene-styrene copolymer)/PA6 (60/40 wt/wt) blends with co-continuous morphology. The effects of SMA molecular structure (molecular weight and maleic anhydride content) used for ZnO-SMA nanoparticles on their dispersion states in SEBS/PA6/ZnO-SMA nanocomposites are investigated. When SMA3 (MAH = 8 wt%, Mn = 250,000 g mol-1), which has relatively higher molecular weight and lower MAH content, is used as the pre-treating agent, ZnO-SMA3 nanoparticles tend to be dispersed at the phase interface in SEBS/PA6/ZnO-SMA nanocomposites. However, when SMA2 (MAH = 23 wt%, Mn = 110,000 g mol-1) with relatively lower molecular weight and higher MAH content is used, no ZnO-SMA2 nanoparticles locate at the interface but stay within PA6 phase. Porous PA6 membranes are obtained by selectively etching SEBS phase out with xylene. see more It can be found that porous PA6 membrane containing ZnO-SMA3 nanoparticles still exhibits much better antibacterial property (R = 3.76) toward S. aureus even at a very low ZnO content (0.5 wt%). This result should be ascribed to almost all the ZnO-SMA3 nanoparticles being exposed to the surface of inner pore walls of PA6 membrane. This work proposes an effective method to prepare porous polymer membrane with functional nanoparticles selectively located at the inner pore walls. V.The presence of pesticide residues in bees is of great interest, given the central role of bees as indicators for environmental assessment. The goal of this article is to propose a method to capture enhanced chemical information for these central environmental indicators. Most of the methods rely on the analysis of pooled samples rather than individual specimens due to practical sample preparation method considerations and limitations in sensitivity. This leads to miss information on the mapping of pesticides and actual amount of pesticide per specimen. In this article, a nanoflow liquid chromatography system coupled to high resolution mass spectrometry (using a hybrid quadrupole-Orbitrap instrument) has been applied for the development of a multiresidue pesticide method for the determination of 162 multiclass pesticides in specific part of honeybee samples (ca. abdomen, head or thorax). The reduced flow rate provided an enhancement in sensitivity and a strong reduction of matrix effects, thus only a quick and simple ultrasound assisted extraction using minute amount of sample was required. Satisfactory results were obtained for all tested analytes with concentration levels detected lower than 0.5 ng g-1 in all cases, thus being acceptable for monitoring purposes. Matrix effect was negligible for 94% of compounds. Extraction recoveries ranged from 70% to 105%, being within SANTE guidelines. Finally, the applicability of the method was demonstrated, by successful application to the analysis of contaminated honeybee samples, extracting useful information from specific bee parts of single specimens, thus, enabling pseudo spatially resolved chemical information. V.Microbial activities are the dynamic core in the soil nutrient cycle. To improve the knowledges about the responses of soil microbial community structure and potential function to long-term cover crops practice. The co-occurrence patterns of soil microbial community structure and functional genes were evaluated using 16SrRNA, ITS and metagenomic technique in 13 years cover crops of orchard grass (OG, Dactylis glomerata L.) with high C/N and white clover (WC, Trifolium repens L.) with low C/N. Conventional tillage (CT) was control. The experiment was implemented in an apple orchard located on the Loess Plateau, China, from 2006 to 2018. We also measured soil physicochemical properties and enzyme activities related to carbon and nitrogen cycling. The conclusions showed that the dominant bacterial phyla were Actinobacteria 27.68% in OG treatment and Proteobacteria 25.89% in WC treatment. Organic matter inputs stimulated growth of the phyla of Actinobacteria, Firmicutes, Chloroflexi, Ascomycota and genera of Bacillus, Blastococcus, Streptomyces and Penicillium. Interestingly, the OG and WC treatments promoted the fungal and bacterial alpha-diversity compared to CT treatment, respectively. In addition, compared to CT treatment, OG treatment was beneficial to the increase of C-cycle enzyme activity, while WC treatment tended to increase the N-cycle enzyme activity. Notably, compared to CT treatment, they both enriched carbon fixation and cycle pathways genes, while WC treatment increased the nitrogen metabolism pathway genes. Moreover, OG treatment was more conducive to the enrichment of carbohydrate enzymes genes involved in the hydrolysis of cellulose and hemicellulose compared to WC treatment. Overall, different quality of plant residues stimulated the specific expressions of soil microbial community structure and function. Long-term planted white clover was effective strategy to improve soil quality. High disposability, high durability, and indiscriminate use have led to the accumulation of plastics at uncontrolled rates in the environment. However, plastics are not the only source of water pollution in the environment. Nonsteroidal anti-inflammatory drugs (NSAIDs) are a group of pharmaceuticals widely and highly consumed in the market due to a low price and over-the-counter accessibility. NSAIDs are frequently detected in surface water environments at μg L-1 concentrations. In the present study, the sorption behavior of three NSAIDs (ibuprofen, naproxen, diclofenac) was examined with four types of microplastics (polystyrene (PS), ultra-high molecular weight polyethylene (UHMWPE), average molecular weight medium density polyethylene (AMWPE), and polypropylene (PP)), under varying water conditions. Low sorption occurred between NSAIDs and microplastics under environmentally relevant conditions. The sorption process exhibited a pronounced pH dependency due to the effect of pH on the speciation of the compounds and the surface charge of the particles.