-
Brogaard Bright posted an update 4 days, 9 hours ago
Macrolides are a significant family of natural products with diverse structures and bioactivities. Considerable effort has been made in recent decades to isolate additional macrolides and characterize their chemical and bioactive properties. The majority of macrolides are obtained from marine organisms, including sponges, marine microorganisms and zooplankton, cnidarians, mollusks, red algae, bryozoans, and tunicates. Sponges, fungi and dinoflagellates are the main producers of macrolides. Marine macrolides possess a wide range of bioactive properties including cytotoxic, antibacterial, antifungal, antimitotic, antiviral, and other activities. Cytotoxicity is their most significant property, highlighting that marine macrolides still encompass many potential antitumor drug leads. This extensive review details the chemical and biological diversity of 505 macrolides derived from marine organisms which have been reported from 1990 to 2020.The results of experimental and clinical trials of the agents based on oncolytic Newcastle disease virus (NDV) strains provided hope for the development of virotherapy as a promising method for treating human tumors. However, the mechanism of the antitumor effect of NDV and realization of its cytotoxic potential in a cancer cell remains to be elucidated. In the current work, we have studied the antitumor effect of NDV in a syngeneic model of mouse Krebs-2 carcinoma treated with intratumoral injections of a wild-type strain NDV/Altai/pigeon/770/2011. Virological methods were used for preparation of a virus-containing sample. Colorimetric MTS assay was used to assess the viability of Krebs-2 tumor cells infected with a viral strain in vitro. In vivo virotherapy was performed in eight-week-old male BALB/c mice treated with serial intratumoral injections of NDV in an experimental model of Krebs-2 solid carcinoma. NVPADW742 Changes in the tumor nodes of Krebs-2 carcinoma after virotherapy were visualized by MRI and immunohistological staining. Light microscopy examination, immunohistochemical and morphometric analyses have shown that intratumoral viral injections contribute to the inhibition of tumor growth, appearance of necrosis-like changes in the tumor tissue and the antiangiogenic effect of the virus. It has been established that a course of intratumoral virotherapy with NDV/Altai/pigeon/770/2011 strain in a mouse Krebs-2 carcinoma resulted in increased destructive changes in the tumor tissue, in the volume density of necrotic foci and numerical density of endothelial cells expressing CD34 and VEGFR. These results indicate that intratumoral NDV injection reduces tumor progression of an aggressive tumor.The present study reports on the development and evaluation of nanostructured composite coatings of polylactic acid (PLA) embedded with iron oxide nanoparticles (Fe3O4) modified with Eucalyptus (Eucalyptus globulus) essential oil. The co-precipitation method was employed to synthesize the magnetite particles conjugated with Eucalyptus natural antibiotic (Fe3O4@EG), while their composition and microstructure were investigated using grazing incidence X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The matrix-assisted pulsed laser evaporation (MAPLE) technique was further employed to obtain PLA/Fe3O4@EG thin films. Optimal experimental conditions for laser processing were established by complementary infrared microscopy (IRM) and scanning electron microscopy (SEM) investigations. The in vitro biocompatibility with eukaryote cells was proven using mesenchymal stem cells, while the anti-biofilm efficiency of composite PLA/Fe3O4@EG coatings was assessed against Gram-negative and Gram-positive pathogens.As a new measuring technique, laser 3D scanning technique has advantages of rapidity, safety, and accuracy. However, the measured result of laser scanning always contains some noise points due to the measuring principle and the scanning environment. These noise points will result in the precision loss during the 3D reconstruction. The commonly used denoising algorithms ignore the strong planarity feature of the pavement, and thus might mistakenly eliminate ground points. This study proposes an ellipsoid detection algorithm to emphasize the planarity feature of the pavement during the 3D scanned data denoising process. By counting neighbors within the ellipsoid neighborhood of each point, the threshold of each point can be calculated to distinguish if it is the ground point or the noise point. Meanwhile, to narrow down the detection space and to reduce the processing time, the proposed algorithm divides the cloud point into cells. The result proves that this denoising algorithm can identify and eliminate the scattered noise points and the foreign body noise points very well, providing precise data for later 3D reconstruction of the scanned pavement.The prognostic value of copeptin in subarachnoid hemorrhage (SAH) has been reported, but the prognosis was largely affected by the initial clinical severity. Thus, the previous studies are not very useful in predicting delayed cerebral ischemia (DCI) in poor-grade SAH patients. Here, we first investigated the feasibility of predicting DCI in poor-grade SAH based on consecutive measurements of plasma copeptin. We measured copeptin levels of 86 patients on days 1, 3, 5, 7, 9, 11, and 13 using ELISA. The primary outcome was the association between consecutive copeptin levels and DCI development. The secondary outcomes were comparison of copeptin with C-reactive protein (CRP) in predicting DCI. Additionally, we compared the prognostic value of transcranial Doppler ultrasonography (TCD) with copeptin using TCD alone to predict DCI. Increased copeptin (OR = 1.022, 95% CI 1.008-1.037) and modified Fisher scale IV (OR = 2.841; 95% CI 0.998-8.084) were closely related to DCI. Consecutive plasma copeptin measurements showed significant differences between DCI and non-DCI groups (p less then 0.001). Higher CRP and DCI appeared to show a correlation, but it was not statistically significant. Analysis of copeptin changes with TCD appeared to predict DCI better than TCD alone with AUCROC differences of 0.072. Consecutive measurements of plasma copeptin levels facilitate the screening of DCI in poor-grade SAH patients.