• McCurdy Carrillo posted an update 1 week, 4 days ago

    Anticancer drug resistance implicates multifunctional mechanisms, and hypoxia is one of the key factors in therapeutic resistance. Hypoxia-specific therapy is considered an extremely effective strategy to fight against cancer. The development of small molecule-based synthetic anion transporters has also recently drawn attention for their potential therapeutic applications against several ion-transport-associated diseases, such as cancer and others. Herein, we describe the development of a hypoxia-responsive proanionophore to trigger controlled transport of anions across membranes under pathogenic conditions. Herein, we report the development of tetraphenylethene (TPE)-based anion transporters. The sulfonium-linked p-nitrobenzyl containing TPE-based proanionophore could be converted into a lipophilic fluorescent Cl- ion carrier in a hypoxic or reductive environment. Stimuli such as nitroreductase (NTR) and glutathione (GSH) mediated regeneration of the TPE-based active Cl- ion transporter also showed aggregation-induced emission (AIE) properties. We hypothesize that such hypoxia and reductive stimuli activatable proanionophores have tremendous potential to fight against channelopathies, including cancer.A one-pot three-component reaction of several 2-ketoaldehydes, secondary amines and terminal alkynes to access 3-aminofurans proceeded well in [bmim][PF6] using a simple and cheap CuI catalyst. The resultant 3-aminofuran products were easily isolated using diethyl ether and the CuI/[bmim][PF6] system was reused six times with a slight decrease in the activity.In a joint DFT and chemometrics study applied to NMR spectra, we disclose the structure of the main decomposition products of hexamethylenetetramine. The combination of these techniques enabled us to propose the structures of near-identical intermediates of the process and to unveil the structure of the main decomposition product of this priviliged structure.The introduction of a carboxy unit onto dipyrrolyldiketone skeletons was achieved by complexation with arylfluoroboron moieties bearing an acid group. Carboxylate-appended anion-responsive π-electronic molecules, formed upon deprotonation, provided anion-binding self-assemblies, as anionic supramolecular polymers, resulting in ion-pairing assemblies.The highly efficient chemoselective electrocatalytic hydrogenation of benzoic acids (BAs) to cyclohexanecarboxylic acids (CCAs) was carried out in a proton-exchange membrane reactor under mild conditions without hydrogenation of the carboxyl group. Among the investigated catalysts, the PtRu alloy catalyst was found to be the most suitable for achieving high current efficiencies for production of CCAs. An electrochemical spillover mechanism on the PtRu alloy catalyst was also proposed.The direct use structurally simple ketones as α-ketone radical sources for α-C(sp3)-H functionalization is a sustainable and powerful approach for constructing complex and multifunctional chemical scaffolds with diverse applications. The reactions of α-ketone radicals with alkenes, alkynes, enynes, imides, and imidazo[1,2-a]pyridines have broadened the structural diversity and complexity of ketones. Through chosen illustrative examples, we outline the recent progress in the development of methods that enable the radical α-C(sp3)-H functionalization of ketones, with an emphasis on radical initiation systems and possible mechanisms of the transformations. The application of these strategies is illustrated by the synthesis of several biologically active molecules and drug molecules. Further subdivision is based on substrate type and reaction type.γ-Butenolides are fundamental frameworks found in many naturally occurring compounds, and they exhibit tremendous biological activities. γ-Butenolides also have proven their potential as useful synthetic intermediates in the total synthesis of natural compounds. Over the years, many γ-butenolide natural products have been isolated, having exocyclic γ-δ unsaturation in their structure. These natural products are collectively referred to as γ-alkylidenebutenolides. Considering the different biological profiles and wide-ranging structural diversity of the optically active γ-butenolide, the development of synthetic strategies for assembling such challenging scaffolds has attracted significant attention from synthetic chemists in recent times. In this report, a brief discussion will be provided to address isolation, biogenesis, and current state-of-the-art synthetic protocols for such molecules. This report aims to focus on synthetic strategies for γ-butenolides from 2010-2020 with a particular emphasis on γ-alkylidenebutenolides and related molecules. Metal-mediated catalytic transformation and organocatalysis are the two main reaction types that have been widely used to access such molecules. Mechanistic considerations, enantioselective synthesis, and practical applications of the reported procedures are also taken into consideration.CpxM(iii)-catalyzed enantioselective C-H functionalization reactions have progressed rapidly using either chiral cyclopentadienyl ligands or appropriate chiral carboxylic acids. In this context, highly reactive carbene and nitrene precursors can serve as effective C-H coupling partners, providing a straightforward and efficient approach to access chiral molecules. In this review, we highlight the developments in CpxM(iii)-catalyzed enantioselective C-H functionalization reactions through migratory insertion of metal-carbenes/nitrenes by employing chiral CpxM(iii) complexes or achiral CpxM(iii) complexes combined with chiral carboxylic acids.The Marangoni effect, induced by the surface tension gradient resulting from the gradient of temperature, concentration, or electric potential gradient along a surface, is commonly utilized to manipulate a droplet. It is also the reason for unique behaviors of liquid metal such as moving, breathing, and large-scale deformation under an electric field, which have aroused tremendous interest in academics. However, liquid metal droplets are usually treated as solid marbles, which neglect their fluidic features and can hardly explain some unusual phenomena, such as a droplet under a stationary electric field that moves in the opposite direction in different solutions. To better clarify these discrepancies, this study reveals that the movement of liquid metal is directly driven by viscous forces of solution rather than interfacial tension. This mechanism was determined by analyzing flow characteristics on a liquid metal surface. Additionally, experiments with liquid metal free falling in solution, liquid metal droplet movement experiments on substrates with different roughness, and liquid metal droplet movement experiments under high current density were additionally conducted to verify the theoretical interpretation. This research is instrumental for a greater understanding of the movement of liquid metal under an electric field and lays the foundation for the applications of liquid metal droplets in pumping, fluid mixing, and many other microfluidic fields.Bombyx (B.) mori silk’s water-responsive actuation correlates to its high β-sheet crystallinity. In this research, we demonstrated that stiff silica nanoparticles can mimic the role of dispersed β-sheet nanocrystals and dramatically increase amorphous silk’s water-responsive actuation energy density to ∼700 kJ m-3.Based on a new designed acyl hydrazone gelator (G2), we developed a supramolecular organogel in glycol with two different hydrophobic fluorescent dyes, namely rhodamine B (RhB) and acridine red, as acceptors. Both the G2@gel-RhB and G2@gel-acridine red systems showed high levels of energy-transfer efficiency and high fluorescence quantum yields.Herein we report nickel-catalyzed sustainable synthesis of a few chosen five-membered fused nitrogen heterocycles such as benzimidazole, purine, benzothiazole, and benzoxazole via acceptorless dehydrogenative functionalization of alcohols. Using a bench stable, easy to prepare, and inexpensive Ni(ii)-catalyst, [Ni(MeTAA)] (1a), featuring a tetraaza macrocyclic ligand (tetramethyltetraaza[14]annulene (MeTAA)), a wide variety of polysubstituted benzimidazole, purine, benzothiazole, and benzoxazole derivatives were prepared via dehydrogenative coupling of alcohols with 1,2-diaminobenzene, 4,5-diaminopyrimidine, 2-aminothiphenol, and 2-aminophenol, respectively. A wide array of benzimidazoles were also prepared via a borrowing hydrogen approach involving alcohols as hydrogen donors and 2-nitroanilines as hydrogen acceptors. A few control experiments were performed to understand the reaction mechanism.We here describe the first Cu-catalysed, diastereoselective 1,2-addition of 1,1-diborylmethane to chiral ketimines for the synthesis of quaternary stereocenters and spiro compounds. The method provides easy access to a range of chiral, highly functionalized compounds, namely oxindole-based β,β’-disubstituted β-amino boronates, boron-containing peptidomimetics and six-, seven-membered spirocyclic hemiboronic esters. Such unprecedented compounds are mostly obtained in high yields and easily isolated as single diastereoisomers, paving the way to a more intense exploitation of boron-containing compounds in diversity-oriented chemistry and drug-discovery programs. Concerning stereochemistry, the application of Ellman’s auxiliary strategy allows in principle to access both steric series of target compounds.Hydrazone bond formation is a versatile reaction employed in several research fields. It is one of the most popular reversible reactions in dynamic combinatorial chemistry. Under physiological conditions, hydrazone exchange benefits from the addition of a nucleophilic catalyst. We report a mechanistic study and superior performance of electron-rich p-substituted aniline derivatives as catalysts for efficient hydrazone formation and exchange in both protic and aprotic solvents. Rigorous kinetic analyses demonstrate that imine formation with 3-hydroxy-4-nitrobenzaldehyde and aniline derivatives proceeds with unprecedented third-order kinetics in which the aldehyde consistently shows a partial order of two. Computational investigations provide insights into the mechanisms of these transformations.Correction for ‘Stretching of fibroblast cells on micropatterned gelatin on silicone elastomer’ by Stefan Müller et al., J. Mater. Chem. B, 2020, 8, 416-425, DOI .Misfolding and the subsequent self-assembly of amyloid-β protein (Aβ) is very important in the occurrence of Alzheimer’s disease (AD). Thus, inhibition of Aβ aggregation is currently an effective method to alleviate and treat AD. Herein, a carboxylated single-walled carbon nanotube (SWCNT-COOH) was rationally designed based on the hydrophobic binding-electrostatic repulsion (HyBER) mechanism. The inhibitory effect of SWCNT-COOH on Aβ fibrillogenesis was first studied. Based on the results of thioflavin T fluorescence and atomic force microscopy imaging assays, it was shown that SWCNT-COOH can not only effectively inhibit Aβ aggregation, but also depolymerize the mature fibrils of Aβ. In addition, its inhibitory action will be affected by the content of carboxyl groups. learn more Moreover, the influence of SWCNT-COOH on cytotoxicity induced by Aβ was investigated by the MTT method. It was found that SWCNT-COOH can produce an anti-Aβ neuroprotective effect in vitro. Molecular dynamics simulations showed that SWCNT-COOH significantly destroyed the overall and internal structural stability of an Aβ40 trimer.