• McCurdy Carrillo posted an update 4 days, 15 hours ago

    Wood pellets selectively increased fungal species having biocontrol potential, such as Mortierella, Cladorrhinum, and Stachybotrys, which confirms the suitability of such carriers of Trichoderma spp. for soil application.We previously reported that chaetoglobosin A (ChA) exhibits a great potential in the biocontrol of nematodes and pathogenic fungi. To improve the production of ChA, a CRISPR-Cas9 system was created and applied for eliminating potential competitive polyketide products. One of the polyketide synthase encoding genes, Cgpks11, which is putatively involved in the biosynthesis of chaetoglocin A, was disrupted. Cgpks11 deletion led to the overexpression of the CgcheA gene cluster, which is responsible for ChA biosynthesis, and a 1.6-fold increase of ChA. Transcription of pks-1, a melanin PKS, was simultaneously upregulated. Conversely, the transcription of genes for chaetoglocin A biosynthesis, e.g., CHGG_10646 and CHGG_10649, were significantly downregulated. The deletion also led to growth retardation and seriously impaired ascospore development. This study found a novel regulatory means on the biosynthesis of ChA by CgPKS11. CgPKS11 affects chaetoglobosin A biosynthesis, growth, and development in Chaetomium globosum.The fungal pathogen Diaporthe citri is a major cause of diseases in citrus. One common disease is melanose, responsible for large economic losses to the citrus fruit industry. However, very little is known about the epidemiology and genetic structure of D. citri. In this study, we analyzed 339 isolates from leaves and fruits with melanose symptoms from five provinces in southern China at 14 polymorphic simple sequence repeat (SSR) loci and the mating type idiomorphs. The genetic variations were analyzed at three levels with separate samples among provinces, among orchards within one county, and among trees within one orchard. The five provincial populations from Fujian, Zhejiang, Jiangxi, Hunan, and Guizhou were significantly differentiated, while limited differences were found among orchards from the same county or among trees from the same orchard. A-1155463 datasheet STRUCTURE analysis detected two genetic clusters in the total sample, with different provincial subpopulations showing different frequencies of isolates in these two clusters. Mantel analysis showed significant positive correlation between genetic and geographic distances, consistent with geographic separation as a significant barrier to gene flow in D. citri in China. High levels of genetic diversity were found within individual subpopulations at all three spatial scales of analyses. Interestingly, most subpopulations at all three spatial scales had the two mating types in similar frequencies and with alleles at the 14 SSR loci not significantly different from linkage equilibrium. Indeed, strains with different mating types and different multilocus genotypes were frequently isolated from the same leaves and fruits. The results indicate that sexual reproduction plays an important role in natural populations of D. citri in southern China and that its ascospores likely represent an important contributor to citrus disease.Association between the gut mycobiome and atopic dermatitis was investigated in 9-12-month-old infants using metagenomics. Two groups of atopic dermatitis infants were classified according to their symptom development as outgrown (recovered) and persisted (still undergoing). The evenness and diversity of the mycobiome in the persisted group were higher than in the healthy and outgrown groups. Dysbiosis of the microbiome in the persisted group was observed by a reduction in the Ascomycota/Basidiomycota ratio. Five fungi were selected as markers from each sample group. In the persisted group, Rhodotorula sp. abundance increased significantly, while Wickerhamomyces sp. and Kodamaea sp. abundance increased in the healthy group, and Acremonium sp. and Rhizopus sp. abundance increased considerably in the outgrown group. Metaproteomic analysis revealed that the persisted group had a high abundance of fungal proteins, particularly those from Rhodotorula sp. Unique proteins such as RAN-binding protein 1 and glycerol kinase from Rhodotorula sp. were hypothesized to be related to atopic dermatitis manifestation in infants.Rezafungin is a novel echinocandin in Phase 3 development for prevention of invasive fungal disease caused by Candida spp., Aspergillus spp. and Pneumocystis jirovecii in blood and marrow transplantation patients. For such patients, standard antifungal prophylaxis currently comprises an azole for Candida and Aspergillus plus trimethoprim-sulfamethoxazole (TMP-SMX) for Pneumocystis pneumonia (PCP) despite drug-drug-interactions and intolerability that may limit their use, thus, alternatives are desirable. Rezafungin demonstrates a favorable safety profile and pharmacokinetic properties that allow for once-weekly dosing in addition, to antifungal activity against these predominant pathogens. Herein, the in vivo effects of rezafungin against Pneumocystis murina pneumonia were evaluated in immunosuppressed mouse models of prophylaxis and treatment using microscopy and qPCR assessments. In the prophylaxis model, immunosuppressed mice inoculated with P. murina were administered TMP-SMX (50/250 mg/kg 1×/week or 3×/week), caspofungin (5 mg/kg 3×/week), rezafungin (20 mg/kg, 1×/week or 3×/week; 5 mg/kg, 3×/week) intraperitoneally for 2, 4, 6 and 8 weeks, then immunosuppressed for an additional 6 weeks. Rezafungin administered for 4 weeks prevented P. murina from developing infection after rezafungin was discontinued. In the treatment model, immunosuppressed mice with P. murina pneumonia were treated with rezafungin 20 mg/kg 3×/week intraperitoneally for 2, 4, 6 and 8 weeks. Treatment with rezafungin for 8 weeks resulted in elimination of P. murina. Collectively, these studies showed that rezafungin could both prevent infection and eliminate P. murina from the lungs of mice. These findings support the obligate role of sexual reproduction for survival and growth of Pneumocystis spp. and warrant further investigation for treatment of P. jirovecii pneumonia in humans.Saccharomyces yeast probiotics (S. ‘boulardii’) have long been applied in the treatment of several gastrointestinal conditions. Despite their widespread use, they are rare opportunistic pathogens responsible for a high proportion of Saccharomyces mycosis cases. The potential virulence attributes of S. ‘boulardii’ as well as its interactions with the human immune system have been studied, however, no information is available on how these yeasts may change due to in-host evolution. To fill this gap, we compared the general phenotypic characteristics, cell morphology, virulence factors, epithelial and immunological interactions, and pathogenicity of four probiotic product samples, two mycosis, and eight non-mycosis samples of S. ‘boulardii’. We assessed the characteristics related to major steps of yeast infections. Mycosis and non-mycosis isolates both displayed novel characters when compared to the product isolates, but in the case of most virulence factors and in pathogenicity, differences were negligible or, surprisingly, the yeasts from products showed elevated levels. No isolates inflicted considerable damage to the epithelial model or bore the hallmarks of immune evasion. Our results show that strains in probiotic products possess characteristics that enable them to act as pathogens upon permissive conditions, and their entry into the bloodstream is not due to active mechanisms but depends on the host. Survival in the host is dependent on yeast phenotypic characteristics which may change in many ways once they start evolving in the host. These facts call attention to the shortcomings of virulence phenotyping in yeast research, and the need for a more thorough assessment of probiotic use.This study aimed to evaluate the efficacy of endophytic bacterium to control common bean rust disease under greenhouse conditions. Endophytic bacterium Pseudomonas putida ASU15 was isolated from fresh asymptomatic common bean, identified using biochemical and molecular characteristics. In vitro, the inhibitory effect of different concentrations of P. putida (1 × 104, 1 × 105 and 1 × 106), as well as fungicide ortiva (0.01%) on uredospores germination of Uromyces appendiculatus were tested using water agar medium. The concentration showing the highest reduction of uredospores germination was at 1 × 106, while there was complete inhibition of uredospores germination associated with using ortiva. Scanning electron microscope exhibited the ability of P. putida cells to attack the cell wall of the fungal uredospores germ tubes of U. appendiculatus, causing obvious cell wall breakdown. The activities of chitinase, lipase, and protease produced by P. putida ASU15, in vitro, were evaluated spectrophotometrically. Chitinolytic, proteolytic, and lipolytic activities were exhibited, contributing 55.26, 3.87, and 26.12 U/mL, respectively. Under greenhouse conditions, treated plants with P. putida ASU15 (two days before pathogen inoculation or at the same time of pathogen inoculation) or fungicide reduced the disease severity, compared to the control. Applying P. putida ASU15 at the same time of pathogen inoculation showed reduction in disease severity (69.9%), higher than application before pathogen inoculation (54.9%). This study is considered the first report that demonstrates the mycoparasitic strategy of P. putida for controlling U. appendiculatus. In conclusion, our results revealed that P. putida ASU15 affords a significant disease reduction that may be attributed to direct suppression of pathogen spores germination.Proline-specific peptidases (PSP) play a crucial role in the processing of fungal toxins, pheromones, and intracellular signaling. They are of particular interest to biotechnology, as they are able to hydrolyze proline-rich oligopeptides that give a bitter taste to food and can also cause an autoimmune celiac disease. We performed in silico analysis of PSP homologs in the genomes of 42 species of higher fungi which showed the presence of PSP homologs characteristic of various kingdoms of living organisms and belonging to different families of peptidases, including homologs of dipeptidyl peptidase 4 (DPP4) and prolyl aminopeptidase 1 found in almost all the studied fungal species. Homologs of proliniminopeptidases from the S33 family absent in humans were also found. Several studied homologs are characteristic of certain taxonomic groups of fungi. Phylogenetic analysis suggests a duplication of ancestral DPP4 into transmembrane and secreted versions, which predate the split of ascomycete and basidiomycete lineages. Comparative biochemical analysis of DPP4 in alkaliphilic and alkali-tolerant strains of fungi showed that, notwithstanding some individual features of these enzymes, in both cases, the studied DPP4 are active and stable under alkaline conditions and at high salt concentrations, which makes them viable candidates for biotechnology and bioengineering.The endangered yellow-spotted river turtle (Podocnemis unifilis) has experienced a dramatic population decline in the Ecuadorian Amazonia, mainly due to overexploitation of its eggs. To reverse this trend, the Wildlife Conservation Society has developed a head-start program in Yasuní National Park since 2008, but the potential risk that microbes associated with its eggs might represent for hatching success has not been evaluated yet. Members of the Fusariumsolani species complex (FSSC) are involved in egg failure in sea turtles under natural and hatchery conditions, but their role in infecting the eggs of P. unifilis is unknown. In this study, we collected eggshells of P. unifilis and obtained 50 fungal and bacterial isolates. Some potentially pathogenic fungi of the genera Fusarium, Penicillium and Rhizopus were identified based on molecular data. Most importantly, the sea turtle pathogenic species F. keratoplasticum not only was present, but it was the most frequently found. Conversely, we have also isolated other microorganisms, such as Pseudomonas or Phoma-like species, producing a wide spectrum of antifungal compounds that may have a protective role against fungal diseases.