-
Scott Bond posted an update 5 days, 9 hours ago
The cooling degree days (CDDs) can indicate the hot climatic impacts on energy consumption and thermal environment comfort effectively. Nevertheless, seldom studies focused on the spatiotemporal characteristics, influence factors, and simulation of global CDDs. This study analyzed the spatial-temporal characteristics of global CDDs from 1970 to 2018 and in the future, explored five determinants, and simulated CDDs and their interannual changing rates. The results showed that the global CDDs were generally higher at lower latitudes and altitudes. Many places experienced significant positive changes of CDDs (p less then 0.05), and the rates became larger at lower latitudes and attitudes. In the future, most CDDs had the sustainability trends. Besides, significant negative partial correlations existed between not only CDDs but also their variation rates with latitude, altitude, and average enhanced vegetation index in the summer, while positive with the annual PM2.5, distance to large waterbodies (p = 0.000). Moreover, the values and variation rates of CDDs can be deduced using the generalized regression neural network method. The root-mean-square errors were 231.73 °C * days and 1.71 °C * days * year-1, respectively. These conclusions were helpful for the energy-saving for cooling with the climate change and optimization of thermal environment.Coal mine pollution is a serious threat to the mine safe production and occupational health of miners. Chemical dust suppression can effectively reduce the concentration of coal dust and suppress the re-entrainment of dust. This paper discusses the research progress of three kinds of traditional dust suppressants the wetting-type, cohesive type, and condensed type. In order to meet dust suppression and environmental protection requirements, 7 kinds of new type dust suppressants, such as compound, ecological environmental protection, polymer, functional, microbes, and enzymes, have been developed by the predecessors. And all kinds of dust suppressant mechanism and main performance index have been summarized. Through the analysis of the research results from 1985 to 2021, it is found that the compound and environment-friendly dust suppressants have gradually become the research focus in this field, accounting for 17.93% and 26.21% of the total number of achievements. In the recent 5 years, new materials, such as microbe suppressant, urease suppressant, and nanomaterials, have gradually emerged. Because of their natural and environmental protection characteristics, it could be predicted that they will become the future development trend in this field. However, there are still some problems to be improved, such as expensive price and complex preparation technology.Excess phosphate in water can cause eutrophication, which must be addressed. Despite many efforts devoted to the adsorptive removal of phosphate from water, the development of new adsorbents with high adsorption capacity is highly desirable. Herein, a novel nanocomposite was proposed for phosphate removal by confining hydrated ferric oxide (HFO) nanoparticles into a cellulose aerogel (CA) network named as HFO@CA. Benefiting from the characteristics of the low density and porous structure of CA, the internal surface of the nanocomposite is more accessible and thus improves the utilization of the HFO nanoparticles. Batch adsorption experiments were carried out to evaluate the phosphate uptake by the prepared adsorbent. The maximum adsorption capacity of HFO@CA occurs at near-acidic pH. With increasing temperature, the composite adsorbent is more favorable for phosphate adsorption. Moreover, the hybrid aerogel exhibited fast kinetic behavior for phosphate removal, which could be accurately depicted by pseudo-second-order model. HFO@CA shows excellent adsorption selectivity in solutions containing competitive anions at higher levels. In addition, five cycles of the phosphate adsorption experiments without obvious capacity loss indicated that HFO@CA has great regenerability. These results demonstrate that HFO@CA has a wide field of application with good prospects in phosphate removal from wastewater, which also provides a new strategy to prepare adsorbents with excellent performance using renewable cellulose resources.Studies focused on emissions and acid deposition of sulfur (S) and nitrogen (N) and the consequent precipitation acidity have a long history. However, atmospheric depositions of cations play a critical role in buffering precipitation acidity, and providing cationic nutrients for vegetation growth lacks sufficient studies equally. The spatiotemporal patterns of cation depositions and their neutralization potential across broad scales remain unclear. Baricitinib manufacturer Through synthesizing the long-term data in forest sites (n = 128) derived from three monitoring networks (NADP in Northern America, EMEP in Europe, and EANET in East Asia) on wet deposition of cations (Na+, NH4-N, K+, Mg2+, and Ca2+), this study assesses the temporal changes and spatial patterns of cation depositions and their neutralization potential over the last two decades. The results showed that the depositions of cationic nutrients were considerably higher in EANET compared to NADP and EMEP. The depositions of sea salt-associated sodium exhibited a significa of AP and NP in EMEP or plateau period of both AP and NP in EANET have come to a standstill of acid neutralizing capacity.The current COVID-19 pandemic outbreak poses a serious threat to public health, demonstrating the critical need for the development of effective and reproducible detection tests. Since the RT-qPCR primers are highly specific and can only be designed based on the known sequence, mutation sensitivity is its limitation. Moreover, the mutations in the severe acute respiratory syndrome β-coronavirus (SARS-CoV-2) genome led to new highly transmissible variants such as Delta and Omicron variants. In the case of mutation, RT-qPCR primers cannot recognize and attach to the target sequence. This research presents an accurate dual-platform DNA biosensor based on the colorimetric assay of gold nanoparticles and the surface-enhanced Raman scattering (SERS) technique. It simultaneously targets four different regions of the viral genome for detection of SARS-CoV-2 and its new variants prior to any sequencing. Hence, in the case of mutation in one of the target sequences, the other three probes could detect the SARS-CoV-2 genome. The method is based on visible biosensor color shift and a locally enhanced electromagnetic field and significantly amplified SERS signal due to the proximity of Sulfo-Cyanine 3 (Cy3) and AuNPs intensity peak at 1468 cm-1. The dual-platform DNA/GO/AuNP biosensor exhibits high sensitivity toward the viral genome with a LOD of 0.16 ng/µL. This is a safe point-of-care, naked-eye, equipment-free, and rapid (10 min) detection biosensor for diagnosing COVID-19 cases at home using a nasopharyngeal sample.Argonaute proteins, which consist of AGO1, AGO2, AGO3 and AGO4, are key players in microRNA-mediated gene silencing. So far, few non-microRNA related biological roles of AGO4 have been reported. Here, we first found that AGO4 had low expression in non-small cell lung cancer (NSCLC) patient tumor tissues and could suppress NSCLC cell proliferation and metastasis. Subsequent studies on the mechanism showed that AGO4 could interact with the tripartite motif-containing protein 21 (TRIM21) and the glucose-regulated protein 78 (GRP78). AGO4 promoted ubiquitination of GRP78 by stabilizing TRIM21, a new specific ubiquitin E3 ligase for promoting K48-linked polyubiquitination of GRP78 confirmed in this paper, which resulted in induced cell apoptosis and inhibited autophagy by activating mTOR signal pathway. Further studies showed that p53 had dominant effects on TRIM21-GRP78 axis by directly increasing the expression of TRIM21 in p53 wild-type cells and AGO4 may alternatively regulate TRIM21-GRP78 axis in p53-deficient cells. We also found that overexpression of AGO4 results in suppression of multiple p53-deficient cell growth both in vivo and vitro. Together, we showed for the first time that the AGO4-TRIM21-GRP78 axis, as a new regulatory pathway, may be a novel potential therapeutic target for p53-deficient tumor treatment.Dormishian and colleagues in their study address an issue that care teams in the NICU encounter on a daily basis, regarding motion artifacts during oxygenation monitoring. In our commentary, we discuss the available tools that allow continuous noninvasive monitoring of oxygenation in the NICU, and modalities that increase the time premature infants spend in the desired SpO2 range and impact their clinical outcomes.Here we use a combination of two-photon Fluorescence Lifetime Imaging Microscopy (FLIM) of NAD(P)H free/bound ratio in living HIs with post-fixation, immunofluorescence-based, cell-type identification. FLIM allowed to measure variations in the NAD(P)H free/bound ratio induced by glucose; immunofluorescence data allowed to identify single α and β cells; finally, matching of the two datasets allowed to assign metabolic shifts to cell identity. 312 α and 654 β cells from a cohort of 4 healthy donors, 15 total islets, were measured. Both α and β cells display a wide spectrum of responses, towards either an increase or a decrease in NAD(P)H free/bound ratio. Yet, if single-cell data are averaged according to the respective donor and correlated to donor insulin secretion power, a non-random distribution of metabolic shifts emerges robust average responses of both α and β cells towards an increase of enzyme-bound NAD(P)H belong to the donor with the lowest insulin-secretion power; by contrast, discordant responses, with α cells shifting towards an increase of free NAD(P)H and β cells towards an increase of enzyme-bound NAD(P)H, correspond to the donor with the highest insulin-secretion power. Overall, data reveal neat anti-correlation of tissue metabolic responses with respect to tissue insulin secretion power.Coronavirus infections are a world-wide threat to human health. A promising strategy to develop a broadly active antiviral is the use of fusion proteins consisting of an antibody IgG Fc region and a human ACE2 domain to which the viral spike proteins bind. Here we create antiviral fusion proteins based on IgM scaffolds. The hexameric ACE2-IgM-Fc fusions can be efficiently produced in mammalian cells and they neutralize the infectious virus with picomolar affinity thus surpassing monomeric ACE2-IgM-Fc by up to 96-fold in potency. In addition, the ACE2-IgM fusion shows increased neutralization efficiency for the highly infectious SARS-CoV-2 omicron variant in comparison to prototypic SARS-CoV-2. Taken together, these multimeric IgM fusions proteins are a powerful weapon to fight coronavirus infections.Engineering microbes to produce plant-derived natural products provides an alternate solution to obtain bioactive products. Here we report a systematic approach to sequentially identify the rate-limiting steps and improve the biosynthesis of the cannabinoid precursor olivetolic acid (OLA) in Yarrowia lipolytica. We find that Pseudomonas sp LvaE encoding a short-chain acyl-CoA synthetase can efficiently convert hexanoic acid to hexanoyl-CoA. The co-expression of the acetyl-CoA carboxylase, the pyruvate dehydrogenase bypass, the NADPH-generating malic enzyme, as well as the activation of peroxisomal β-oxidation pathway and ATP export pathway are effective strategies to redirect carbon flux toward OLA synthesis. Implementation of these strategies led to an 83-fold increase in OLA titer, reaching 9.18 mg/L of OLA in shake flask culture. This work may serve as a baseline for engineering cannabinoids biosynthesis in oleaginous yeast species.