-
Scott Bond posted an update 2 days, 9 hours ago
Immune responses involve many types of leukocytes that traffic to the site of injury, recognize the insult and respond appropriately. Imaging of the immune system involves a set of methods and analytical tools that are used to visualize immune responses at the cellular and molecular level as they occur in real time. We will review recent and emerging technological advances in optical imaging, and their application to understanding the molecular and cellular responses of neutrophils, macrophages and lymphocytes. Optical live-cell imaging provides deep mechanistic insights at the molecular, cellular, tissue and organism levels. Live-cell imaging can capture quantitative information in real time at subcellular resolution with minimal phototoxicity and repeatedly in the same living cells or in accessible tissues of the living organism. Advanced FRET probes allow tracking signaling events in live cells. Light-sheet microscopy allows for deeper tissue penetration in optically clear samples, enriching our understanding of the higher-level organization of the immune response. Super-resolution microscopy offers insights into compartmentalized signaling at a resolution beyond the diffraction limit, approaching single-molecule resolution. This Review provides a current perspective on live-cell imaging in vitro and in vivo with a focus on the assessment of the immune system. © 2020. Published by The Company of Biologists Ltd.Progression from the initial vascular response upon hyperglycemia to a proliferative stage with neovacularizations is the hallmark of proliferative diabetic retinopathy. Here we report on the novel diabetic pdx1 -/- zebrafish mutant as model for diabetic retinopathy that lacks the transcription factor pdx1 via CRISPR/Cas9-mediated gene knockout leading to disturbed pancreatic development and hyperglycemia. Larval pdx1 -/- mutants prominently show vasodilation of blood vessels via increased vascular thickness in the hyaloid network as direct developmental precursor of the adult retinal vasculature in zebrafish. In adult pdx1 -/- mutants, impaired glucose homeostasis induces increased hyperbranching and hypersprouting with new vessel formation in the retina and aggravation of the vascular alterations from the larval to the adult stage. Both vascular aspects respond to antiangiogenic and antihyperglycemic pharmacological interventions in the larval stage and are accompanied by alterations in the nitric oxide metabolism. Thus, the pdx1 -/- mutant represents a novel model to study mechanisms of hyperglycemia-induced retinopathy wherein extensive proangiogenic alterations in blood vessel morphology and metabolic alterations underlie the vascular phenotype. © 2020 by the American Diabetes Association.Abnormal interactions between misfolded mutant and wild-type (WT) proinsulin in the endoplasmic reticulum (ER) drive the molecular pathogenesis of Mutant-INS-gene induced Diabetes of Youth (MIDY). How these abnormal interactions are initiated remains unknown. Normally, proinsulin-WT dimerizes in the ER. Here, we suggest that the normal proinsulin-proinsulin contact surface, involving the B-chain, contributes to dominant-negative effects of misfolded MIDY mutants. Specifically, we find that proinsulin Tyr-B16, which is a key residue in normal proinsulin dimerization, helps confer dominant-negative behavior of MIDY mutant proinsulin-C(A7)Y. Substitutions of Tyr-B16 with ether Ala, Asp, or Pro in proinsulin-C(A7)Y each decrease the abnormal interactions between the MIDY mutant and proinsulin-WT, rescuing proinsulin-WT export, limiting ER stress, and increasing insulin production in β-cells and human islets. This study reveals the first evidence indicating that noncovalent proinsulin-proinsulin contact initiates dominant-negative behavior of misfolded proinsulin, pointing to a novel therapeutic target to enhance proinsulin-WT export and increase insulin production. learn more © 2020 by the American Diabetes Association.Approximately 40% of patients with diabetic macular edema (DME) are resistant to anti-vascular endothelial growth factor (VEGF) therapy (rDME). Here, we demonstrate that significant correlations between inflammatory cytokines and VEGF, as observed in naive DME, are lost in patients with rDME. VEGF overexpression in the mouse retina caused delayed inflammatory cytokine upregulation, monocyte/macrophage infiltration (CD11b+ Ly6C+ CCR2+ cells), macrophage/microglia activation (CD11b+ CD80+ cells), and blood-retinal barrier disruption due to claudin-5 redistribution, which did not recover with VEGF blockade alone. Phosphorylated protein analysis of VEGF-overexpressed retinas revealed ROCK activation. Administration of ripasudil, a selective ROCK inhibitor, attenuated retinal inflammation and claudin-5 redistribution. Ripasudil also contributed to the stability of claudin-5 expression by both transcriptional enhancement and degradation suppression in inflammatory cytokine-stimulated endothelium. Notably, the anti-VEGF agent and the ROCK inhibitor were synergic in suppressing cytokine upregulation, monocyte/macrophage infiltration, macrophage/microglia activation, and claudin-5 redistribution. Furthermore, in vitro analysis confirmed that claudin-5 redistribution depends on ROCK2, but not on ROCK1. This synergistic effect was also confirmed in human rDME cases. Our results suggest that ROCK-mediated claudin-5 redistribution by inflammation is a key mechanism in the anti-VEGF resistance of DME. © 2020 by the American Diabetes Association.Diabetic keratopathy occurs in approximately 70% of all diabetics. This study was designed to examine the effects of vitamin D receptor knockout (VDR-/-) and vitamin D deficiency (VDD) on corneal epithelial wound healing and nerve density in diabetic mice. Diabetes was induced using the low dose streptozotocin method. Corneal epithelial wounds were created using an Alger brush and wound healing was monitored over time. Corneal nerve density was measured in unwounded mice. VDR-/- and VDD diabetic mice (diabetic for 8 and 20 weeks, respectively) had slower healing ratios than WT diabetic mice. VDR-/- and VDD diabetic mice also showed significantly decreased nerve density. Reduced wound healing ratios and nerve densities were not fully rescued by a supplemental diet rich in calcium, lactose and phosphate. We conclude that VDR-/- and VDD significantly reduce both corneal epithelial wound healing and nerve density in diabetic mice. Because the supplemental diet did not rescue wound healing or nerve density, these effects are likely not specifically related to hypocalcemia.