-
Cobb Jernigan posted an update 4 days, 15 hours ago
In addition, genetic profiling indicated that AMR genes and mutations spread among pneumococcal strains in Myanmar. A minimum inhibitory concentration assay indicated that several pneumococcal strains had acquired azithromycin and tetracycline resistance, whereas no strains were found to be resistant against levofloxacin and high-dose penicillin G. Phylogenetic and pangenome analysis showed various pneumococcal lineages and that the pneumococcal strains contain a rich and mobile gene pool, providing them with the ability to adapt to selective pressures. This molecular epidemiological information can help in tracking global infection and supporting AMR control in addition to public health interventions in Myanmar.A Gram-stain-negative, aerobic, yellow, non-motile, rod-shaped and alginate-degrading bacterium, designated Dm15T, was isolated from marine alga collected in Weihai, PR China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Dm15T represents a distinct line of the family Flavobacteriaceae. Strain Dm15T had the highest 16S rRNA gene sequence similarity to its closest phylogenetic neighbour Arcticiflavibacter luteus (96.7 %) and 93.7-96.4 % sequence similarity to other phylogenetic neighbours (Bizionia paragorgiae, Winogradskyella thalassocola, Ichthyenterobacterium magnum, Psychroserpens burtonensis and Arcticiflavibacter luteus) in the family Flavobacteriaceae. The novel isolate was able to grow at 10-40 °C (optimum, 30-33 °C), pH 7.0-9.0 (optimum, pH 7.0-7.5) and with 0.5-6.0 % NaCl (optimum 2.0-3.0 %, w/v). It could grow at 40 °C, and degrade alginate and cellulose, which were different from the neighbour genera. The draft genome consisted of 3395 genes with a total length of 3 798 23815T).Dicistroviruses are single-stranded RNA viruses in the family Dicistroviridae. The viruses have mainly been detected in arthropods and are the cause of several devastating diseases in many of these species such as honeybees. Increasingly, dicistroviruses have also been detected in both mammalian and avian species in faeces, blood and liver, but with unconfirmed pathology. Here, we report a novel dicistrovirus detected in the intestinal content of a captive red squirrel with enteritis along with the disease history, pathology and genomic characterisation of the virus. Virus particle morphology resembled those of picornaviruses with a diameter of 28-32 nm but failed to be detected using a mammalian/avian pan viral microarray. Next-generation sequencing confirmed a dicistrovirus having a typical dicistrovirus genome organization, but with the polyprotein 1 being shorter by about 100 amino acids, compared to that of other dicistroviruses. Phylogenetic analysis of ORF1 and ORF2 sequences clustered the virus with two yet unassigned dicistroviruses detected in Gorilla gorilla and a freshwater arthropod and likely to be designated to a new genus. Our data further highlights the ever-growing diversity of dicistroviruses, but the clinical significance of the virus in mammalian species and particularly red squirrels has yet to be established.The emergence of carbapenem resistance in Klebsiella pneumoniae represents a major global public health concern. Nosocomial outbreaks caused by multidrug-resistant K. pneumoniae are commonly reported to result in high morbidity and mortality due to limited treatment options. Between October 2019 and January 2020, two concurrent high-mortality nosocomial outbreaks occurred in a referral hospital in Ho Chi Minh City, Vietnam. We performed genome sequencing and phylogenetic analysis of eight K. pneumoniae isolates from infected patients and two environmental isolates for outbreak investigation. We identified two outbreaks caused by two distinct lineages of the international sequence type (ST) 16 clone, which displayed extensive drug resistance, including resistance to carbapenem and colistin. Carbapenem-resistant ST16 outbreak strains clustered tightly with previously described ST16 K. pneumoniae from other hospitals in Vietnam, suggesting local persistence and transmission of this particular clone in this setting. Selleck Enitociclib We found environmental isolates from a hospital bed and blood pressure cuff that were genetically linked to an outbreak case cluster, confirming the potential of high-touch surfaces as sources for nosocomial spread of K. pneumoniae. Further, we found colistin resistance caused by disruption of the mgrB gene by an ISL3-like element, and carbapenem resistance mediated by a transferable IncF/blaOXA-181 plasmid carrying the ISL3-like element. Our study highlights the importance of coordinated efforts between clinical and molecular microbiologists and infection control teams to rapidly identify, investigate and contain nosocomial outbreaks. Routine surveillance with advanced sequencing technology should be implemented to strengthen hospital infection control and prevention measures.Mangroves grow in the intertidal zone, which alternates between fresh water and sea water, with abundant bioresources. In mangrove habitats, yeasts play an important role in the decomposition of organic matter, and such nutrient cycling has high ecological importance. During a study of the diversity of yeast from Taiwan mangroves, seven strains of basidiomycetous yeasts were isolated and these yeasts represent two novel yeast species belonging to the genus Vishniacozyma. According to the sequences of the D1/D2 domain of large subunit (LSU) rRNA and the internal transcribed spacer (ITS) region, these seven strains could be clearly classified into two groups representing two individual, distinct species. Strains HM5L06, HM6L07, HM11L11 and BJ3S01, differed from their closest relative species Vishniacozyma phoenicis by 4-5 nt substitutions (no gaps) in the sequences of the D1/D2 domain of LSU rRNA and by 23 nt substitutions (10 gaps) in the ITS region. Strains HM6L11, HM7L02 and HM8L19, differed from their closest relative species Vishniacozyma penaeus by 7 nt substitutions (one gap) in the sequences of the D1/D2 domain of LSU rRNA and by 27 nt substitutions (12 gaps) in the ITS region. The scientific names of Vishniacozyma taiwanica sp. nov. and Vishniacozyma changhuana sp. nov. are proposed for these strains. The holotypes are Vishniacozyma taiwanica BCRC 23477T (ex-type HM5L06=CBS 16558; MycoBank number MB837428) and Vishniacozyma changhuana BCRC 23478T (ex-type HM6L11=CBS 16556; MycoBank number MB837429).