-
Meincke Lam posted an update 2 days, 11 hours ago
Somitogenesis, the primary segmentation of the vertebrate embryo, is associated with oscillating genes that interact with a wave of cell differentiation. The necessity of cell-matrix adherence and embryonic tension, however, suggests that mechanical cues are also involved. To explicitly investigate this, we applied surplus axial strain to live chick embryos. Despite substantial deformations, the embryos developed normally and somite formation rate was unaffected. Surprisingly, however, we observed slow cellular reorganizations of the most elongated somites into two or more well-shaped daughter somites. In what appeared to be a regular process of boundary formation, somites divided and fibronectin was deposited in between. Cell counts and morphology indicated that cells from the somitocoel underwent mesenchymal-epithelial transition; this was supported by a Cellular Potts model of somite division. Thus, although somitogenesis appeared to be extremely robust, we observed new boundary formation in existing somites and conclude that mechanical strain can be morphologically instructive. Alcohol-induced liver injury is characterized by strong inflammation. Polysaccharides separated from herbs can prevent ethanol-induced liver injury. Dendrobium officinale Kimura et Migo leaves (D. officinale) are a new food resource that contains a certain amount of polysaccharide. However, the hepatoprotective effects and the potential mechanisms of D. officinale polysaccharide (DOP) remain unknown. Thus, this study aimed to assess the hepatoprotective effects and potential mechanism in vivo and in vitro of DOP. Male Sprague-Dawley rats were used to establish alcohol-induced liver injury models through the oral gavage of absolute alcohol (5 mL/kg) after the oral administration of DOP (400 and 100 mg/kg) for 30 days. Hematoxylin-eosin staining was used for the histological assessments of hepatocyte degeneration, and the AST and ALT levels in the serum and liver tissue were measured. Scriptaid The inflammatory markers were evaluated using ELISA and immunohistochemistry. The potential mechanism of DOP in alcohol-induced liver cell (LO2) injury in vitro was further identified. Results showed that DOP clearly decreased the AST in the serum and hepatic tissue, obviously reduced the production of inflammatory cytokines (such as IL-1β, IL-6, and TNF-α), and can successfully inhibit NF-κB phosphorylation in vivo. In vitro experiments indicated that DOP increased the LO2 cell viability; prevented LDH release prominently; reduced the secretion of IL-1β, IL-6, and TNF-α; and reversed the expression of IL-1β, IL-6, TNF-α, caspase 1, NLRP3, p-NF-κB, and TLR4. Overall, DOP can alleviate ethanol-induced acute liver injury via the TLR4/NF-κB signaling pathway. OBJECTIVE Recent reports have suggested that seizures may be a component of the clinical presentation in myelin oligodendrocyte glycoprotein antibody (MOG-Ab)-associated disease. We aimed to conduct a systematic review and meta-analysis to comprehensively evaluate the occurrence of epileptic seizures in the disease. METHODS We searched PubMed, MEDLINE and EMBASE for studies reporting the occurrence of acute symptomatic seizures in MOG-Ab-associated disease. Fixed or random effects model was used to pool results across studies with a meta-analysis. RESULTS A total of 14 studies met the inclusion criteria. Overall, acute symptomatic seizures were observed in 20.5% (95% confidence interval [CI] 13.7%-30.7%, I2=60.6%) patients with MOG-Ab-associated disease, and in a similar proportion of children respectively (20.0%; 95% CI 14.3%-27.8%, I2=7.0%). The pooled probability of seizure occurrence in males was 30.1% (95% CI 17.5%-52%, I2=0.0%) while that in females was much lower (12.0%; 95% CI 5.5%-26.4%, I2=0.0%). Furthermore, when we focused on those with acute disseminated encephalomyelitis-like phenotype, 37.3% patients experienced seizures (95% CI 21.0%-66.3%, I2=55.8%). CONCLUSIONS Our study suggested that epileptic seizures were common in MOG-Ab-associated disease and offered insight into associated factors that contribute to the occurrence of seizures. Future studies with explicit evaluation are required. Recent studies indicate that erythrocytes actively modulate blood clotting and thrombus formation. The lipid mediator lysophosphatidic acid (LPA) is produced by activated platelets, and triggers a signaling process in erythrocytes. This results in cellular calcium uptake and exposure of phosphatidylserine (PS) at the cell surface, thereby generating activated membrane binding sites for factors of the clotting cascade. Moreover, erythrocytes of patients with a bleeding disorder and mutations in the scramblase TMEM16F show impaired PS exposure and microvesiculation upon treatment with calcium ionophore. We report that TMEM16F inhibitors tannic acid (TA) and epigallocatechin-3-gallate (EGCG) inhibit LPA-induced PS exposure and calcium uptake at low micromolar concentrations; fluoxetine, an antidepressant and a known activator of TMEM16F, enhances these processes. These effectors likewise modulate erythrocyte PS exposure and microvesicle shedding induced by calcium ionophore treatment. Further, LPA-treated erythrocytes triggered thrombin generation in platelet-free plasma which was partially impaired in the presence of TA and EGCG. Thus, this study suggests that LPA activates the scramblase TMEM16F in erythrocytes, thereby possibly mediating a pro-thrombotic function in these cells. EGCG as well as fluoxetine, substances with potentially high plasma concentrations due to alimentation or medical treatment, should be considered as potential effectors of systemic hemostatic regulation. This study evaluated a novel three-stage process devoted to the cascade production of lactate, biohydrogen and methane from tequila vinasse (TV), with emphasis on attaining a high and stable biohydrogen production rate (HPR) by utilizing lactate as biohydrogen precursor. In the first stage, tailored operating conditions applied to a sequencing batch reactor were effective in sustaining a lactate concentration of 12.4 g/L, corresponding to 89% of the total organic acids produced. In the second stage, the stimulation of lactate-centered dark fermentation which entails the decoupling of biohydrogen production from carbohydrates utilization was an effective approach enabling stable biohydrogen production, having HPR fluctuations less than 10% with a maximum HPR of 12.3 L/L-d and a biohydrogen yield of 3.1 L/LTV. Finally, 1.6 L CH4/L-d and 6.5 L CH4/LTV were obtained when feeding the biohydrogen fermentation effluent to a third methanogenic stage, yielding a global energy recovery of 267.5 kJ/LTV.