-
Schroeder Hess posted an update 1 week, 1 day ago
Matrix-assisted laser desorption/ionization combined with laser-induced postionization (MALDI-2) is a recently introduced method for enhanced mass spectrometry imaging of numerous classes of biomolecules, including phospho- and glycolipids in tissue sections at high lateral resolution. Here we describe the first adaptation of the technology to a Bruker timsTOF fleX mass spectrometer. Upon use of a 1 kHz postionization laser, MALDI-2 produces a sizable increase in the number of detected features as well as in ion signal intensities. This enhancement is similar to that described previously for low repetition rate MALDI-2 systems, but now enables substantially enhanced measurement speeds. In our proof-of-concept study, we furthermore demonstrate, on examples of rat brain and testis tissue sections, that the combination of MALDI-2 with the trapped ion mobility spectrometry (TIMS) functionality of the instrument can crucially support unravelling the complex molecular composition of the lipidome. Numerous isomeric/isobaric ion species are successfully separated upon using the collisional cross section (CCS) as additional specific physical property. With the possibilities of high data acquisition speed or high separation powers in combination with the increased sensitivity of MALDI-2 available in one instrument, the described methodology could be a valuable tool in many areas of biological and medical research.High water content is hard to be achieved in conductive hydrogels because a mass of conductive constituent is needed to form an internal conductive pathway. Here, we developed anisotropic electrically conductive hydrogels with high water content based on bacterial cellulose (BC). Polystyrene sulfonate (PSS) was grafted to the acryloyl chloride-modified BC to provide a template for the subsequent synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT). The BC-g-PSS/PEDOT hydrogels obtained were electrically conductive owing to the immobilization of PEDOT on the surface of cellulose nanofibers. The hydrogels exhibited an electrical conductivity of 0.24 S cm-1. Further, they demonstrated suppleness in compression (compiled to external compression stress >2.8 MPa and recoverable), inherent high water content (∼95.0 wt %), and anisotropy (anisotropic index of 4.1 in conductivity) from BC. The incorporation of a thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel into the BC-g-PSS/PEDOT hydrogel demonstrated a uniaxial thermoresponsive actuation with resistance change. The expected size and resistance change were only observed in the direction vertical to the cellulose nanofiber layers. These hydrogels could accommodate further developments in novel tissue engineering scaffolds, implantable biosensors, and smart soft electronic devices.Organophosphates are used as agricultural pesticides and also encountered as toxic nerve agents in chemical warfare. Accordingly, development of sensors for detecting and monitoring organophosphate vapors is highly sought after. We present a new capacitive gas sensor exhibiting remarkable specificity and sensitivity toward the organophosphate nerve gas simulants triethyl-phosphate (TEP) and dimethyl methyl phosphate and the pesticide dichlorvos. Specifically, the capacitive sensor comprises a composite porous graphene oxide matrix intercalating cobalt or nickel ions, prepared through a simple freeze-drying procedure. We demonstrate that the porous graphene oxide/metal ion electrode undergoes fast capacitance changes only upon exposure to organophosphate vapors. Moreover, the sensor exhibits extraordinary sensitivity upon interactions with TEP. Detailed mechanistic analyses, carried out in comparison to porous graphene oxide coupled to other transition metal ions, reveal that the remarkable sensing properties of the Co2+ or Ni2+/porous graphene oxide systems likely arise from the distinct mode of metal ion incorporation into the graphene oxide host matrix and substitution of metal-complexed water ligands with organophosphate molecules. The new metal ion/porous graphene oxide capacitive sensor may be employed for alerting and monitoring organophosphate gases in different environments.Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of individual bubbles are critical but also challenging. Here, we report an approach using scanning electrochemical cell microscopy (SECCM) with a single channel pipet to quantitatively study individual gas bubble nucleation on different electrode substrates, including conventional polycrystalline Pt and Au films, as well as the most interesting two-dimensional semiconductor MoS2. Due to the confinement effect of the pipet, well-defined peak-shaped voltammetric features associated with single bubble nucleation and growth are consistently observed. From stochastic bubble nucleation measurement and finite element simulation, the surface H2 concentration corresponding to bubble nucleation is estimated to be ∼218, 137, and 157 mM, with critical nuclei contact angles of ∼156°, ∼161°, and ∼160° at polycrystalline Pt, Au, and MoS2 substrates, respectively. We further demonstrated the surface faceting at polycrystalline Pt is not specifically correlated with the bubble nucleation behavior.A synthesis of 3,3-diarylazetidines from N-Boc-3-aryl-3-azetidinols using Friedel-Crafts arylation conditions with AlCl3 is described. A series of substituted diarylazetidines were readily prepared and isolated as the oxalate salts in high yield and high purity. The 3,3-diarylazetidine oxalates were then easily converted into N-alkyl and N-acyl analogues (RX, NaHCO3/DMF/100 °C) in high overall yields.Background Prone position (PP) improves acute respiratory distress syndrome (ARDS) survival by reducing the risk of ventilation-induced lung injury. However, inter-individual variability is a hallmark of ARDS and lung protection by PP might not be optimal in all patients. In the present study, we dynamically assessed physiologic effects of PP by Electrical Impedance Tomography (EIT) and identified predictors of improved lung protection by PP in ARDS patients. Methods Prospective physiologic study on 16 intubated, sedated and paralyzed patients with ARDS undergoing PP as per clinical decision. EIT data were recorded during two consecutive steps 1) baseline supine position before and after a recruitment maneuver (RM); 2) prone position before and after a RM. “Improved lung protection” by PP was defined in the presence of simultaneous improvement of ventilation homogeneity (Hom), alveolar overdistension and collapse (ODCL) and amount of recruitable lung volume by RM in comparison to supine. Results PP vs. click here supine increased the tidal volume distending the dependent regions (Vtdep), resulting in improved Hom (1.