-
Hoppe Cullen posted an update 1 week, 2 days ago
We present extensive experiments on the three different applications using four biomedical imaging datasets. Experimental results show that our method exhibits remarkable performance and outperforms the compared methods.Androgen receptor (AR) is abundantly expressed in the preoptico-hypothalamic area, bed nucleus of stria terminalis, and medial amygdala of the brain where androgen plays an important role in regulating male sociosexual, emotional and aggressive behaviors. In addition to these brain regions, AR is also highly expressed in the hippocampus, suggesting that the hippocampus is another major target of androgenic modulation. It is known that androgen can modulate synaptic plasticity in the CA1 hippocampal subfield. However, to date, the effects of androgen on the intrinsic plasticity of hippocampal neurons have not been clearly elucidated. In this study, the effects of androgen on the expression of AR in the hippocampus and on the dynamics of intrinsic plasticity of CA1 pyramidal neurons were examined using immunohistochemistry, Western blotting and whole-cell current-clamp recording in unoperated, sham-operated, orchiectomized (OCX), OCX + testosterone (T) or OCX + dihydrotestosterone (DHT)-primed adolescent male rats. Orchiectomy significantly decreased AR-immunoreactivity, resting membrane potential, action potential numbers, afterhyperpolarization amplitude and membrane resistance, whereas it significantly increased action potential threshold and membrane capacitance. These effects were successfully reversed by treatment with either aromatizable androgen T or non-aromatizable androgen DHT. Furthermore, administration of the AR-antagonist flutamide in intact rats showed similar changes to those in OCX rats, suggesting that androgens affect the excitability of CA1 pyramidal neurons possibly by acting on the AR. Our current study potentially clarifies the role of androgen in enhancing the basal excitability of the CA1 pyramidal neurons, which may influence selective neuronal excitation/activation to modulate certain hippocampal functions.Alzheimer’s disease (AD) pathology is characterized by amyloid plaques containing amyloid beta (Aβ) peptides, neurofibrillary tangles containing hyperphosphorylated tau protein, and neuronal loss. In addition, Aβ deposition in brain microvessels, known as cerebral amyloid angiopathy (CAA), increases blood-brain barrier (BBB) permeability and induces vascular dysfunction which aggravates AD pathology. The aim of the present study was to characterize neurovascular dysfunction in the Tg-SwDI mouse model of AD. Isolated brain capillaries from wild type (WT) and Tg-SwDI mice were used to evaluate the expression of monomeric and aggregated forms of Aβ, P-glycoprotein (P-gp), the receptor for advance glycation end-products (RAGE) and the tight junction (TJs) proteins occludin and claudin-5. Cultured brain endothelial cells were used to analyze barrier function via fluorescein flux. Isolated capillaries from Tg-SwDI mice contained increased levels of aggregated and oligomeric Aβ compared to WT animals. Isolated capillaries from Tg-SwDI had decreased levels of P-gp, which transports Aβ from brain to blood, and increased levels of RAGE, which transports Aβ from blood to brain. Zanubrutinib molecular weight In addition, the TJ protein occludin was decreased in Tg-SwDI mice relative to WT mice, which correlated with an increase in BBB permeability in cultured brain endothelial cells. These findings demonstrated that Tg-SwDI mice exhibit Aβ aggregation that is due, in part, to impaired Aβ clearance driven by both a decrease in P-gp and increase in RAGE protein levels in brain capillaries. Aβ aggregation promotes a decrease in the expression of the TJ protein occludin, and as consequence an increase in BBB permeability.The transition of neuronal burst firing from the interictal to ictal state contributes to seizure initiation in human temporal lobe epilepsy. The low-Mg2+ model of seizure is characterized by initial spontaneous interictal bursting events, which later developed into ictaform discharges. Both experimental and clinical studies point to a complex link between spreading depolarization (SD) and epileptiform field potentials (EFP), including SD-induced epileptic seizures. To investigate the mechanism of SD and EFP interactions, the effect of SD on the transition of interictal to ictal state in low-Mg2+ model of seizure was studied in the rat hippocampus in vitro. After the appearance of interictal activities, SD was elicited by local application of KCl. SD significantly increased the amplitude and duration of action potentials and after-hyperpolarization, and hyperpolarized the membrane potential. Furthermore, SD significantly increased the duration of interictal activities and the threshold potentials of interictal activities. In addition, SD significantly accelerated the transition from interictal to ictal state compared to the control tissues. Ictal activities after induction of SD exhibited a significantly longer duration. This study revealed that SD accelerates interictal-to-ictal transitions and facilitates development of ictaform discharges, possibly via the enhancement of neural synchronization, and points to the potential role of SD in seizure initiation.Oligodendrocyte precursor cells (OPCs) arise sequentially first from a ventral and then from a dorsal precursor domain at the end of neurogenesis during spinal cord development. Whether the sequential production of OPCs is of physiological significance has not been examined. Here we show that ablating Shh signaling from nascent ventricular zone derivatives and partially from the floor plate results in a severe diminishment of ventral derived OPCs but normal numbers of motor neurons in the postnatal spinal cord. In the absence of ventral vOPCs, dorsal dOPCs populate the entire spinal cord resulting in an increased OPC density in the ventral horns. These OPCs take on an altered morphology, do not participate in the removal of excitatory vGlut1 synapses from injured motor neurons, and exhibit morphological features similar to those found in the vicinity of motor neurons in the SOD1 mouse model of Amyotrophic Lateral Sclerosis (ALS). Our data indicate that vOPCs prevent dOPCs from invading ventral spinal cord laminae and suggest that vOPCs have a unique ability to communicate with injured motor neurons.