-
Craig Wooten posted an update 3 days, 8 hours ago
The growth and productivity of several apple rootstocks have been evaluated in various previous studies. However, limited information is available on their tolerance to osmotic stress. In the present study, the physiological and molecular responses as well as abscisic acid (ABA) levels were assessed in six apple rootstocks (M26, V3, G41, G935, B9 and B118) osmotically stressed with polyethylene glycol (PEG, 30%) application under greenhouse conditions. Our results showed that V3, G41, G935 and B9 had higher relative water content (RWC), and lower electrolyte leakage (EL) under stress conditions compared to M26 and B118. Additionally, water use efficiency (WUE) was higher in V3, G41 and B9 than M26, which might be partially due to the lower transpiration rate in these tolerant rootstocks. V3, G41 and B9 rootstocks also displayed high endogenous ABA levels which was combined with a reduction in stomatal conductance and decreased water loss. At the transcriptional level, genes involved in ABA-dependent and ABA-independent pathways, e.g., SnRK, DREB, ERD and MYC2, showed higher expression in V3, G41, G935 and B9 rootstocks compared to M26 in response to stress. In contrast, WRKY29 was down-regulated in response to stress in the tolerant rootstocks, and its expression was negatively correlated with ABA content and stomatal closure. Overall, the findings of this study showed that B9, V3 and G41 displayed better osmotic stress tolerance followed by G935 then M26 and B118 rootstocks.The experimental animal model is still essential in the development of new anticancer drugs. We characterized mouse tumors derived from two-dimensional (2D) monolayer cells or three-dimensional (3D) spheroids to establish an in vivo model with highly standardized conditions. Primary cancer-associated fibroblasts (CAFs) were cultured from head and neck squamous cell carcinoma (HNSCC) tumor tissues and co-injected with monolayer cancer cells or spheroids into the oral mucosa of mice. Mice tumor blood vessels were stained, followed by tissue clearing and 3D Lightsheet fluorescent imaging. We compared the effect of exosomes secreted from 2D or 3D culture conditions on the angiogenesis-related genes in HNSCC cells. Our results showed that both the cells and spheroids co-injected with primary CAFs formed tumors. Interestingly, vasculature was abundantly distributed inside the spheroid-derived but not the monolayer-derived mice tumors. In addition, cisplatin injection more significantly decreased spheroid-derived but not monolayer-derived tumor size in mice. Additionally, exosomes isolated from co-culture media of FaDu spheroid and CAF upregulated angiogenesis-related genes in HNSCC cells as compared to exosomes from FaDu cell and CAF co-culture media under in vitro conditions. The mouse tumor xenograft model derived from 3D spheroids of HNSCC cells with primary CAFs is expected to produce reliable chemotherapy drug screening results given the robust angiogenesis and lack of necrosis inside tumor tissues.In the presented study, a capillary electrophoresis-mass spectrometry method combining high separation efficiency and sensitive detection has been developed and validated, for the first time, to quantify branched chain amino acids (valine, isoleucine, leucine) in commercial food and sport supplement samples and human plasma samples. The separations were performed in a bare fused silica capillary. The background electrolyte was composed of 500 mM formic acid with pH 2.0. The plasma sample pretreatment was realized by simple protein precipitation with acetonitrile. Injection of a short zone of highly basic electrolyte before the sample injection and application of the negative pressure on the separation were accompanied by enhanced resolution of the isobaric amino acids-isoleucine and leucine. 4-Phenylbutyric acid The developed method was characterized by favorable validation parameters, such as linearity (r2 > 0.99), accuracy and precision, the limit of detection, lower limit of quantification, or robustness. These parameters were more than sufficient for the quantification of branched chain amino acids in various samples. The determined concentrations of branched chain amino acids in food and sports supplements were in very good agreement with the content declared by the manufacturer. The investigated concentrations of branched chain amino acids were in the range 294.68-359.24 µM for valine, 91.76-95.67 µM for isoleucine, and 196.78-251.24 µM for leucine. These concentrations fall within the physiological limits. The developed CE-MS/MS method represents a suitable alternative to traditional approaches used in branched chain amino acid quality control and bioanalysis.In this work, synthesis and optical properties of a new composite based on poly(o-phenylenediamine) (POPD) fiber like structures, poly(vinylidene fluoride) (PVDF) spheres and double-walled carbon nanotubes (DWNTs) are reported. As increasing the PVDF weight in the mixture of the chemical polymerization reaction of o-phenylenediamine, the presence of the PVDF spheres onto the POPD fibers surface is highlighted by scanning electron microscopy (SEM). The down-shift of the Raman line from 1421 cm-1 to 1415 cm-1 proves the covalent functionalization of DWNTs with the POPD-PVDF blends. The changes in the absorbance of the IR bands peaked around 840, 881, 1240 and 1402 cm-1 indicate hindrance steric effects induced of DWNTs to the POPD fiber like structures and the PVDF spheres, as a consequence of the functionalization process of carbon nanotubes with macromolecular compounds. The presence of the PVDF spheres onto the POPD fiber like structures surface induces a POPD photoluminescence (PL) quenching process. An additional PL quenching process of the POPD-PVDF blends is reported to be induced in the presence of DWNTs. The studies of anisotropic PL highlight a change of the angle of the binding of the PVDF spheres onto the POPD fiber like structures surface from 50.2° to 38° when the carbon nanotubes concentration increases in the POPD-PVDF/DWNTs composites mass up to 2 wt.%.The use of chemicals to boost food production increases as human consumption also increases. The insectidal, nematicidal and acaricidal chemical carbofuran (CAF), is among the highly toxic carbamate pesticide used today. Alongside, copper oxide nanoparticles (CuO) are also used as pesticides due to their broad-spectrum antimicrobial activity. The overuse of these pesticides may lead to leaching into the aquatic environments and could potentially cause adverse effects to aquatic animals. The aim of this study is to assess the effects of carbofuran and copper oxide nanoparticles into the cardiovascular system of zebrafish and unveil the mechanism behind them. We found that a combination of copper oxide nanoparticle and carbofuran increases cardiac edema in zebrafish larvae and disturbs cardiac rhythm of zebrafish. Furthermore, molecular docking data show that carbofuran inhibits acetylcholinesterase (AChE) activity in silico, thus leading to impair cardiac rhythms. Overall, our data suggest that copper oxide nanoparticle and carbofuran combinations work synergistically to enhance toxicity on the cardiovascular performance of zebrafish larvae.Aging is an unavoidable part of life. The more aged we become, the more susceptible we become to various complications and damages to the vital organs, including the kidneys. The existing drugs for kidney diseases are mostly of synthetic origins; thus, natural compounds with minimal side-effects have attracted growing interest from the scientific community and pharmaceutical companies. A literature search was carried out to collect published research information on the effects of resveratrol on kidney aging. Recently, resveratrol has emerged as a potential anti-aging agent. This versatile polyphenol exerts its anti-aging effects by intervening in various pathologies and multi-signaling systems, including sirtuin type 1, AMP-activated protein kinase, and nuclear factor-κB. Researchers are trying to figure out the detailed mechanisms and possible resveratrol-mediated interventions in divergent pathways at the molecular level. This review highlights (i) the causative factors implicated in kidney aging and the therapeutic aspects of resveratrol, and (ii) the effectiveness of resveratrol in delaying the aging process of the kidney while minimizing all possible side effects.Gamma-aminobutyric acid (GABA) is considered the primary inhibitory neurotransmitter in the human cortex. However, whether GABA regulates melanogenesis has not been comprehensively elucidated. In this study, we reveal that GABA (20 mM) significantly inhibited α-melanocyte-stimulating hormone (α-MSH)-induced extracellular (from 354.9% ± 28.4% to 126.5% ± 16.0%) and intracellular melanin contents (from 236.7% ± 11.1% to 102.7% ± 23.1%) in B16F10 melanoma cells, without inducing cytotoxicity. In addition, α-MSH-induced hyperpigmentation in zebrafish larvae was inhibited from 246.3% ± 5.4% to 116.3% ± 3.1% at 40 mM GABA, displaying no apparent cardiotoxicity. We also clarify that the GABA-mediated antimelanogenic properties were related to the direct inhibition of microphthalmia-associated transcription factor (MITF) and tyrosinase expression by inhibiting cyclic adenosine monophosphate (cAMP) and cAMP response element-binding protein (CREB). Furthermore, under α-MSH stimulation, GABA-related antimelanogenic effects were mediated through the GABAA and GABAB receptors, with subsequent inhibition of Ca2+ accumulation. In B16F10 melanoma cells and zebrafish larvae, pretreatment with bicuculline, a GABAA receptor antagonist, and CGP 46381, a GABAB receptor antagonist, reversed the antimelanogenic effect of GABA following α-MSH treatment by upregulating Ca2+ accumulation. In conclusion, our results indicate that GABA inhibits α-MSH-induced melanogenesis. Hence, in addition to the health benefits of GABA in the central nervous system, it could ameliorate hyperpigmentation disorders.Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardiovascular complications (CVCs) associated with infection. The reported CVCs include myocarditis, heart failure, arrhythmias, thromboembolism and blood pressure abnormalities. These occur, in part, because of dysregulation of the Renin-Angiotensin-Aldosterone System (RAAS) and Kinin-Kallikrein System (KKS). A major route by which SARS-CoV-2 gains cellular entry is via the docking of the viral spike (S) protein to the membrane-bound angiotensin converting enzyme 2 (ACE2). The roles of ACE2 within the cardiovascular and immune systems are vital to ensure homeostasis. The key routes for the development of CVCs and the recently described long COVID have been hypothesised as the direct consequences of the viral S protein/ACE2 axis, downregulation of ACE2 and the resulting damage inflicted by the immune response. Here, we review the impact of COVID-19 on the cardiovascular system, the mechanisms by which dysregulation of the RAAS and KKS can occur following virus infection and the future implications for pharmacological therapies.