• Sloan Geisler posted an update 10 hours, 31 minutes ago

    The interaction of ultraviolet radiation with biological matter results in direct damage such as pyrimidine dimers in DNA. It also results in indirect damage provoked by the production of reactive oxygen species (ROS) catalyzed by photosensitizers. Photosensitizers can be endogenous (e.g., tryptophan) or exogenous (e.g., TiO2 and other photostable UVA sunscreens). Direct damage triggers an inflammatory response and the oxidative and proteolytic bursts that characterize its onset. The inflammatory reaction multiplies the effects of one single photon. Indirect damage, such as the peroxidative cascade in membrane lipids, can extend to thousands of molecular modifications per absorbed photon. Sunscreens should therefore be formulated in the presence of appropriate antioxidants. Superoxide and singlet oxygen are the main ROS that need to be tackled this review describes some of the molecular, biochemical, cellular, and clinical consequences of exposure to UV radiation as well as some results associated with scavengers and quenchers of superoxide and singlet oxygen, as well as with inhibitors of singlet oxygen production.Chitosan solubility in aqueous organic acids has been widely investigated. However, most of the previous works have been done with plasticized chitosan films and using acetic acid as the film casting solvent. In addition, the properties of these films varied among studies, since they are influenced by different factors such as the chitin source used to produce chitosan, the processing variables involved in the conversion of chitin into chitosan, chitosan properties, types of acids used to dissolve chitosan, types and amounts of plasticizers and the film preparation method. Therefore, this work aimed to prepare chitosan films by the solvent casting method, using chitosan derived from Litopenaeus vannamei shrimp shell waste, and five different organic acids (acetic, lactic, maleic, tartaric, and citric acids) without plasticizer, in order to evaluate the effect of organic acid type and chitosan source on physicochemical properties, degradation and cytotoxicity of these chitosan films. The goal was to select thederived from Litopenaeus vannamei shrimp shell waste, which can be used in the pharmaceutical industry.The industrial filleting of blue shark (Prionace glauca) led to the generation of a large number of central skeletons of low interest to fishmeal plants handling such wastes. check details In this context, the present study describes the optimization of the hydrolysis process (pH 8.35, T 58 °C, 1% (v/w) of alcalase and t = 4 h) to produce chondroitin sulfate (CS) together with the recovery of bioapatites. Then, that hydrolysate was chemically treated with an optimal alkaline-hydroalcoholic-saline solution (0.48 M of NaOH, 1.07 volumes of EtOH and 2.5 g/L of NaCl) and finally purified by ultrafiltration-diafiltration (30 kDa) to obtain glycosaminoglycan with a purity of 97% and a productive yield of 2.8% (w/w of skeleton). The size of the biopolymer (CS) was of 58 kDa with prevalence of 6S-GalNAc sulfation (4S/6S ratio of 0.25), 12% of GlcA 2S-GalNAc 6S and 6% of non-sulfated disaccharides. Crude bioapatites were purified by pyrolysis and FT-Raman and XRD techniques confirm the presence of hydroxyapatite [Ca5(PO4)3(OH)], with a molar mass of 502.3 g/mol, embedded in the organic matrix of the skeleton. The mineralized tissues of blue shark are promising marine sources for the extraction of high value biomaterials with clinical application in bone and tissue regeneration and are still completely unexplored.The effects of chitosan (CTS) as the reinforcing phase on the properties of potato starch (PS)-based foams were studied in this work. The formic acid solutions of CTS and PS were uniformly mixed in a particular ratio by blending and then placed in a mold made of polytetrafluoroethylene for microwave treatment to form starch foam. The results showed that the molecular weight and concentration of CTS could effectively improve the density and compressive properties of starch-based foams. Furthermore, orthogonal experiments were designed, and the results showed that when the molecular weight of CTS in foams is 4.4 × 105, the mass fraction is 4 wt%, and the mass ratio of CTS-PS is 3/4.2; the compressive strength of foams is the highest at approximately 1.077 mPa. Furthermore, Fourier transform infrared spectroscopy analysis demonstrated the interaction between starch and CTS, which confirmed that the compatibility between CTS and PS is excellent.Genistein (Gen) and exercise (Exe) have been postulated as potential strategies to ameliorate obesity, inflammation, and gut microbiota (GM) with promising results. However, the impact of the combination of both Exe and Gen is yet to be investigated. We aimed to analyze the impacts of Exe, Gen, and their combined effects on GM and inflammation in mice after a 12-week high-fat, high-sugar diet (HFD). Eighty-three C57BL/6 mice were randomized to control, HFD, HFD + Exe, HFD + Gen, or HFD + Exe + Gen. The V4 region of the 16S rRNA gene was analyzed with Illumina MiSeq. Serum samples were used to analyze interleukin (Il)-6 and Tumor Necrosis Factor alpha (TNF-alpha). The HFD + Exe and HFD + Exe + Gen treatments resulted in significantly greater microbial richness compared to HFD. All the treatments had a significantly different impact on the GM community structure. Ruminococcus was significantly more abundant after the HFD + Exe + Gen treatment when compared to all the other HFD groups. Exe + Gen resulted in serum Il-6 concentrations similar to that of controls. TNF-alpha concentrations did not differ by treatment. Overall, Exe had a positive impact on microbial richness, and Ruminococcus might be the driving bacteria for the GM structure differences. Exe + Gen may be an effective treatment for preventing HFD-induced inflammation.A variety of contaminants in food is an important aspect affecting food safety. Due to the presence of its trace amounts and the complexity of food matrix, it is very difficult to effectively separate and accurately detect them. The magnetic metal-organic framework (MMOF) composites with different structures and functions provide a new choice for the purification of food matrix and enrichment of trace targets, thus providing a new direction for the development of new technologies in food safety detection with high sensitivity and efficiency. The MOF materials composed of inorganic subunits and organic ligands have the advantages of regular pore structure, large specific surface area and good stability, which have been thoroughly studied in the pretreatment of complex food samples. MMOF materials combined different MOF materials with various magnetic nanoparticles, adding magnetic characteristics to the advantages of MOF materials, which are in terms of material selectivity, biocompatibility, easy operation and repeatability.