• Link Lynn posted an update 1 week, 2 days ago

    sier needle placement in the crossed-leg position.Dual-focus lenses that impose simultaneous competing myopic defocus over the entire visual field produce axial hyperopic shifts in refractive error. The purpose of this study was to characterize the effects of eccentricity on the ability of myopic defocus signals to influence central refractive development in infant monkeys. From 24 to 152 days of age, rhesus monkeys were reared with binocular, dual-focus lenses that had central, zero-powered zones surrounded by alternating concentric annular power zones of +3D and zero power. Between subject groups the diameter of the central, zero-powered zone was varied from 2 mm to 8 mm in 2 mm steps (+3D/pl 2 mm, n = 6; +3D/pl 4 mm, n = 6; +3D/pl 6 mm, n = 8, or + 3D/pl 8 mm, n = 6). For the treatment lens with 2, 4, 6 and 8 mm central zones, objects at eccentricities beyond 11°, 16°, 19° and 23°, respectively, were imaged exclusively through the dual-power peripheral zones. Refractive status (retinoscopy), corneal power (keratometry) and axial dimensions (ultrasonography) were measured at two-week intervals. Comparison data were obtained from monkeys reared with binocular, single-vision +3D full-field lenses (+3D FF, n = 6) and 41 normal control monkeys reared with unrestricted vision. At the end of the rearing period, with the exception of the +3D/pl 8 mm group (median = +3.64 D), the ametropias for the other lens-reared groups (medians FF = +4.39 D, 2 mm = +5.19 D, 4 mm = +5.59 D, 6 mm = +3.50 D) were significantly more hyperopic than that for the normal monkeys (+2.50 D). These hyperopic errors were associated with shallower vitreous chambers. The key finding was that the extent and consistency of these hyperopic ametropias varied with the eccentricity of the dual-focus zones. The results confirm that myopic defocus in the near periphery can slow axial growth, but that imposed defocus beyond about 20° from the fovea does not consistently alter central refractive development.Following exposure to an oriented stimulus, the perceived orientation is slightly shifted, a phenomenon termed the tilt aftereffect (TAE). This estimation bias, as well as other context-dependent biases, is speculated to reflect statistical mechanisms of inference that optimize visual processing. Importantly, although measured biases are extremely robust in the population, the magnitude of individual bias can be extremely variable. For example, measuring different individuals may result in TAE magnitudes that differ by a factor of 5. Such findings appear to challenge the accounts of bias in terms of learned statistics is inference so different across individuals? Here, we found that a strong correlation exists between reaction time and TAE, with slower individuals having much less TAE. In the tilt illusion, the spatial analogue of the TAE, we found a similar, though weaker, correlation. These findings can be explained by a theory predicting that bias, caused by a change in the initial conditions of evidence accumulation (e.g., priors), decreases with decision time (*Communications Biology 3 (2020) 1-12). We contend that the context-dependence of visual processing is more homogeneous in the population than was previously thought, with the measured variability of perceptual bias explained, at least in part, by the flexibility of decision-making. Homogeneity in processing might reflect the similarity of the learned statistics.Two experiments were performed to determine effects of follicular ablation (FA) and GnRH treatment on conception rate and synchronization in timing of ovulation among Holstein heifers. In Experiment 1, heifers were randomly allocated to four groups Control (n = 84) prostaglandin F2α (PGF) IM on Day 0; FA-5/GnRH (n = 43) FA 5 days before PGF and GnRH on Day 2; FA-4/GnRH (n = 48)FA 4 days before PGF and GnRH on Day 2; andFA-3/GnRH (n = 21) FA 3 days before PGF and GnRH on Day 2. Ultrasonography was performed to determine follicular size, ovulation occurrence, and size of CL. In Experiment 2, heifers were assigned to three groups Control (n = 264), FA-5/GnRH, and FA-4/GnRH. Pregnancy diagnosis was performed at Days 30 and 60. In Experiment 1, size of largest follicle at time of PGF was less variable (P ≤ 0.05) in all FA groups compared to the Control group. With the FA-5/GnRH and FA-4/GnRH treatments, there were greater (P ≤ 0.05) proportions of timing of ovulation synchronization (86 % and 85 %, respectively) compared to the Control (61 %) and FA-3/GnRH (62 %) groups. In Experiment 2, conception rates did not differ among groups, however, there were more pregnancies per cow when timing-of-ovulation treatments were imposed. In conclusion, follicular ablation combined with GnRH treatment resulted in an increased proportion of heifers having synchronized ovulation and, therefore, number of recipient heifers available for embryo transfer. Additionally, there was no effect on conception rate when there was greater synchronization in timing of ovulation among heifers.Titanium dioxide nanoparticles (n-TiO2) are emerging contaminants and the ecological impact of these materials to the nearshore environment is largely unknown. The reactivity of n-TiO2 increases with light exposure, and the photocatalytic effects have been shown on cultures of bacteria and microalgae in the laboratory. The purpose of this study was to assess the response of natural bacterial and microalgal communities associated with marine aggregates to n-TiO2 under conditions similar to those found in the photic zone of nearshore waters. Nano and bulk TiO2 particles were incorporated into marine aggregates over 4 days under two light conditions 618 and 024 (hours lightdark). The abundance and metabolic response of heterotrophic bacteria and viability of microalgae associated with aggregates were assessed. Olaparib mouse Although the proportion of living microalgae was unchanged, the abundance, total metabolic activity and functional diversity of heterotrophic bacteria were significantly altered by irradiated n-TiO2.Environmental changes have been associated with natural climatic variability or human activity. Water resources management is, perhaps, the most drastic change observed in the coastal environment. However, external forcings such as the El Niño event have important implications in the global and regional hydrological balance. These environmental changes have an impact on the density and biomass of the ichthyofauna in the Terminos Lagoon (TL) for the past 30 years, presumably, associated with variations in the temperature and surface salinity of the sea. Therefore, in the present study, δ18O was quantified in otoliths of two important species due to their dominance Stellifer lanceolatus and Eucinostomus gula, and to understand the environmental changes reflected in both species. The δ18O was analyzed in otoliths of these two species captured in 1998/1997, 2006/2007 and 2016/2017 and were compared with in situ temperature and salinity data. Sea surface temperature and salinity increased by 2 °C and 9, respectively, between 1997 and 2017.