-
Link Lynn posted an update 1 week, 1 day ago
1(3) cm-1. Ab initio computational studies reveal a different type of magnetic anisotropy to be present in the two crystallographically – independent Co centers in 5-II.Phen-DC3 is among the most commonly used G-quadruplex (G4)-stabilizers in vitro and in cells. Here, we show that the G4-interactive binding interactions enable one to tune the optical properties of Phen-DC3 allowing the detection of G4 structures in cancer cells. This work opens up new directions for the use of Phen-DC3 as a selective G4 fluorescent reporter.The detection of glucose has important significance in clinical medicine and the food industry, especially in the diagnosis of diabetes. AZD1722 In recent years, electrochemical non-enzymatic glucose sensors have attracted intensive attention to detect the glucose level with great progress. In this review, we summarize a variety of non-enzymatic glucose sensor materials, including precious metals Pt, Au and their alloy metals, non-precious transition metals and their metal oxides, composites and other functional materials. Moreover, fundamental insights into the reaction mechanism and influencing factors of materials are given. Finally, this review discusses the perspectives and challenges of future developments in electrochemical non-enzymatic glucose detection.N,O-Bis(tert-butoxycarbonyl)hydroxylamines are readily accessible as imine surrogates, which are bench stable and could quantitatively generate the corresponding imines for in situ applications. An unpresented catalytic asymmetric method for the synthesis of α-amino esters and ketones from novel imine surrogates, N,O-bis(tert-butoxycarbonyl)hydroxylamines, as well as its preliminary mechanistic studies are reported. A variety of optically enriched products were obtained in excellent yields and enantioselectivities (up to 99% yield and >99% ee).Among 2D materials, clay mineral nanosheets have been extensively studied owing to their specific features, such as high surface charge and large surface area. Recently, we reported a stable free-standing (without any surfactants or matrices) monolayer clay mineral, characterized via annular dark-field scanning transmission electron microscopy (ADF-STEM) at the atomic-scale. Herein, we demonstrated that the monolayer clay mineral exhibited outstanding stability under electron beam irradiation compared to two- or three-layered nanosheets via electron diffraction analysis. In addition to its low thickness (∼1 nm-thick), the absence of an interlayer space was the critical factor contributing to the distinctive stability of the monolayer clay mineral, compared to that of the two- or three-layered clay mineral. The findings here inspire further investigation in free-standing clay mineral using (S)TEM and also for a wide variety of nanomaterials which are strongly hydrated.We use photoinduced absorption spectroscopy (PAS) to study the ionic motion in CH3NH3PbI3 perovskite solar cells, consisting of indium tin oxide (ITO)/NiOx/perovskite/phenyl-C61-butyric-acid-methyl ester (PCBM)/aluminum-doped zinc oxide (AZO)/ITO. We observed a slow (∼50 mHz) spectral blue shift (∼10-4 eV) under modulated 520 nm illumination, which we interpreted in terms of the modulation in the bulk ion density. Numerical simulation shows that the mobile ion moves in and out from the double layers at the perovskite/charge transport layer interfaces in order to recover the bulk charge neutrality tipped off-balance by the photocarriers. The diffusion coefficient of the ion is 10-10 to 10-11 cm2 s-1, when we assume that the characteristic time constant of the ion motion is governed by the diffusion.Alkaline-earth metal Ca2+ modified CdS nanocrystals have been designed for the first time for highly efficient H2 evolution from hydrogen sulfide (H2S) with Na2SO3 as a favourable reaction medium. The advantage of Na2SO3 was revealed by an electrochemical test, and the conversion of Na2SO3 during the reaction was carefully studied. Particularly, most of Na2SO3 was converted into Na2S2O3. Highly value-added utilization of waste H2S is therefore achieved via photocatalysis.Efficient and selective hydrolysis of inert peptide bonds is of paramount importance. MOF-808, a metal-organic framework based on Zr6 nodes, can hydrolyze peptide bonds efficiently under biologically relevant conditions. However, the details of the catalyst structure and of the underlying catalytic reaction mechanism are challenging to establish. By means of DFT calculations we first investigate the speciation of the Zr6 nodes and identify the nature of ligands that bind to the Zr6O8H4-x core in aqueous conditions. The core is predicted to strongly prefer a Zr6O8H4 protonation state and to be predominantly decorated by bridging formate ligands, giving Zr6(μ3-O)4(μ3-OH)4(BTC)2(HCOO)6 and Zr6(μ3-O)4(μ3-OH)4(BTC)2(HCOO)5(OH)(H2O) as the most favorable structures at physiological pH. The GlyGly peptide can bind MOF in several different ways, with the preferred structure involving coordination through the terminal carboxylate analogously to the binding mode of formate ligand. The pre-reactive binding mode in which the amide carbonyl oxygen coordinates the metal core lies 7 kcal higher in free energy. The preferred reaction pathway is predicted to have two close-lying transition states, either of which could be the rate-determining step nucleophilic attack on the amide carbon atom and C-N bond breaking, with calculated relative free energies of 31 and 32 kcal mol-1, respectively. Replacement of formate by water and hydroxide at the Zr6 node is predicted to be possible, but does not appear to play a role in the hydrolysis mechanism.Chiroptical switches, whose chiral optical signals such as optical rotatory dispersion (ORD), circular dichroism (CD) and circularly polarized luminescence (CPL) are reversibly interchangeable between two states, offer many promising applications in the fields of chiral sensing, optical displays, information storage, asymmetric catalysis and so on. Through various non-covalent interactions, supramolecular chiroptical switches have been constructed by combining the chiral and responsive functional components. This review summarizes the recent progress in the construction of supramolecular chiroptical switchable systems that reversibly respond to various stimuli, such as light, electricity, magnetic fields, mechanical force, solvents, pH, temperature, and chemical additives. The switching of supramolecular chirality in the forms of on/off, amplification/weakening and chirality inversion is shown. Additionally, the design of chiroptical switchable systems for chiral logic gates, data communication, chiral separation and asymmetric catalysis has been demonstrated.