-
Brink Klemmensen posted an update 1 week, 3 days ago
Our results highlight the more complex patterns of correlations arising from multiple causal orders, which are similar to the more complex patterns of entanglement arising in multipartite quantum systems.Quantum coherence is a useful resource for increasing the speed and decreasing the irreversibility of quantum dynamics. Because of this feature, coherence is used to enhance the performance of various quantum information processing devices beyond the limitations set by classical mechanics. However, when we consider thermodynamic processes, such as energy conversion in nanoscale devices, it is still unclear whether coherence provides similar advantages. Here we establish a universal framework, clarifying how coherence affects the speed and irreversibility in thermodynamic processes described by the Lindblad master equation, and give general rules for when coherence enhances or reduces the performance of thermodynamic devices. Our results show that a proper use of coherence enhances the heat current without increasing dissipation; i.e., coherence can reduce friction. In particular, if the amount of coherence is large enough, this friction becomes virtually zero, realizing a superconducting-like “dissipation-less” heat current. Since our framework clarifies a general relation among coherence, energy flow, and dissipation, it can be applied to many branches of science from quantum information theory to biology. As an application to energy science, we construct a quantum heat engine cycle that exceeds the power-efficiency trade-off bound on classical engines and effectively attains the Carnot efficiency with finite power in fast cycles.Using the dynamical mean field theory we investigate the magnetic field dependence of dc conductivity in the Hubbard model on the square lattice, fully taking into account the orbital effects of the field introduced via the Peierls substitution. In addition to the conventional Shubnikov-de Haas quantum oscillations, associated with the coherent cyclotron motion of quasiparticles and the presence of a well-defined Fermi surface, we find an additional oscillatory component with a higher frequency that corresponds to the total area of the Brillouin zone. These paradigm-breaking oscillations appear at elevated temperature. This finding is in excellent qualitative agreement with the recent experiments on graphene superlattices. We elucidate the key roles of the off-diagonal elements of the current vertex and the incoherence of electronic states, and explain the trends with respect to temperature and doping.In tissues as diverse as amphibian skin and the human airway, the cilia that propel fluid are grouped in sparsely distributed multiciliated cells (MCCs). We investigate fluid transport in this “mosaic” architecture, with emphasis on the trade-offs that may have been responsible for its evolutionary selection. Live imaging of MCCs in embryos of the frog Xenopus laevis shows that cilia bundles behave as active vortices that produce a flow field accurately represented by a local force applied to the fluid. A coarse-grained model that self-consistently couples bundles to the ambient flow reveals that hydrodynamic interactions between MCCs limit their rate of work so that they best shear the tissue at a finite but low area coverage, a result that mirrors findings for other sparse distributions such as cell receptors and leaf stomata.We study the effect of optical polarization squeezing on the performance of a sensitive, quantum-noise-limited optically pumped magnetometer. We use Bell-Bloom (BB) optical pumping to excite a ^87Rb vapor containing 8.2×10^12 atoms/cm^3 and Faraday rotation to detect spin precession. The sub-pT/sqrt[Hz] sensitivity is limited by spin projection noise (photon shot noise) at low (high) frequencies. Probe polarization squeezing both improves high-frequency sensitivity and increases measurement bandwidth, with no loss of sensitivity at any frequency, a direct demonstration of the evasion of measurement backaction noise. We provide a model for the quantum noise dynamics of the BB magnetometer, including spin projection noise, probe polarization noise, and measurement backaction effects. The theory shows how polarization squeezing reduces optical noise, while measurement backaction due to the accompanying ellipticity antisqueezing is shunted into the unmeasured spin component. The method is compatible with high-density and multipass techniques that reach extreme sensitivity.A paradigm shift in quantum thermometry is proposed. To date, thermometry has relied on local estimation, which is useful to reduce statistical fluctuations once the temperature is very well known. In order to estimate temperatures in cases where few measurement data or no substantial prior knowledge are available, we build instead a method for global quantum thermometry. Based on scaling arguments, a mean logarithmic error is shown here to be the correct figure of merit for thermometry. Its full minimization provides an operational and optimal rule to postprocess measurements into a temperature reading, and it establishes a global precision limit. We apply these results to the simulated outcomes of measurements on a spin gas, finding that the local approach can lead to biased temperature estimates in cases where the global estimator converges to the true temperature. The global framework thus enables a reliable approach to data analysis in thermometry experiments.Using a reverse-engineering approach on the time-distorted solution in a reference potential, we work out the external driving potential to be applied to a Brownian system in order to slow or accelerate the dynamics, or even to invert the arrow of time. By welding a direct and time-reversed evolution toward a well chosen common intermediate state, we analytically derive a smooth protocol to connect two arbitrary states in an arbitrarily short amount of time. Not only does the reverse-engineering approach proposed in this Letter contain the current-rather limited-catalog of explicit protocols, but it also provides a systematic strategy to build the connection between arbitrary states with a physically admissible driving. Optimization and further generalizations are also discussed.Following a Gallavotti’s conjecture, stationary states of Navier-Stokes fluids are proposed to be described equivalently by alternative equations besides the Navier-Stokes equation itself. We discuss a model system symmetric under time reversal based on the Navier-Stokes equations constrained to keep the enstrophy constant. It is demonstrated through highly resolved numerical experiments that the reversible model evolves to a stationary state which reproduces quite accurately all statistical observables relevant for the physics of turbulence extracted by direct numerical simulations (DNS) at different Reynolds numbers. The possibility of using reversible models to mimic turbulence dynamics is of practical importance for the coarse-grained version of Navier-Stokes equations, as used in large-eddy simulations. Furthermore, the reversible model appears mathematically simpler, since enstrophy is bounded to be constant for every Reynolds number. Finally, the theoretical interest in the context of statistical mechanics is briefly discussed.A molecular scale understanding of the organization and structure of a liquid near a solid surface is currently a major challenge in surface science. It has implications across different fields from electrochemistry and energy storage to molecular biology. Three-dimensional AFM generates atomically resolved maps of solid-liquid interfaces. The imaging mechanism behind those maps is under debate, in particular, for concentrated ionic solutions. Theory predicts that the observed contrast should depend on the tip’s charged state. Here, by using neutrally, negatively, and positively charged tips, we demonstrate that the 3D maps depend on the tip’s polarization. A neutral tip will explore the total particle density distribution (water and ions) while a charged tip will reveal the charge density distribution. The experimental data reproduce the key findings of the theory.We report on the selective acceleration of carbon ions during the interaction of ultrashort, circularly polarized and contrast-enhanced laser pulses, at a peak intensity of 5.5×10^20 W/cm^2, with ultrathin carbon foils. Under optimized conditions, energies per nucleon of the bulk carbon ions reached significantly higher values than the energies of contaminant protons (33 MeV/nucleon vs 18 MeV), unlike what is typically observed in laser-foil acceleration experiments. Experimental data, and supporting simulations, emphasize different dominant acceleration mechanisms for the two ion species and highlight an (intensity dependent) optimum thickness for radiation pressure acceleration; it is suggested that the preceding laser energy reaching the target before the main pulse arrives plays a key role in a preferential acceleration of the heavier ion species.Spin-orbit interactions which couple the spin of a particle with its momentum degrees of freedom lie at the center of spintronic applications. Of special interest in semiconductor physics are Rashba and Dresselhaus spin-orbit coupling. When equal in strength, the Rashba and Dresselhaus fields result in SU(2) spin rotation symmetry and emergence of the persistent spin helix only investigated for charge carriers in semiconductor quantum wells. Recently, a synthetic Rashba-Dresselhaus Hamiltonian was shown to describe cavity photons confined in a microcavity filled with optically anisotropic liquid crystal. In this Letter, we present a purely optical realization of two types of spin patterns corresponding to the persistent spin helix and the Stern-Gerlach experiment in such a cavity. We show how the symmetry of the Hamiltonian results in spatial oscillations of the spin orientation of photons traveling in the plane of the cavity.We consider the thermal relaxation process of a quantum system attached to single or multiple reservoirs. Quantifying the degree of irreversibility by entropy production, we prove that the irreversibility of the thermal relaxation is lower bounded by a relative entropy between the unitarily evolved state and the final state. The bound characterizes the state discrepancy induced by the nonunitary dynamics, and thus reflects the dissipative nature of irreversibility. Intriguingly, the bound can be evaluated solely in terms of the initial and final states and the system Hamiltonian, thereby providing a feasible way to estimate entropy production without prior knowledge of the underlying coupling structure. This finding refines the second law of thermodynamics and reveals a universal feature of thermal relaxation processes.No abstract available.No abstract available.Substance use is rife amongst adolescents, including learners. U0126 nmr Learners are easily exposed to substances with onset as early as 10 years and average age of drug experimentation is 12 years in South Africa. This results in many negative health and social outcomes, a challenge as far as the achievement of global, regional and national goals such as quality education. The revised Integrated School Health Policy (ISHP) is a policy operating within the school environment aiming to address health and social barriers of learners and improve optimal health, comprising a vague action component on substance use prevention. This article is an opinion piece, which uses the Walt and Gilson model as an operational framework to analyse the revised ISHP within the lens of substance use. It assesses the four interrelated aspects policy context, policy content, policy actors, and the policy process. The ISHP is placed within schools where adolescents are found and has the potential to reduce many health challenges such as substance use amongst learners.