• Meyers Chan posted an update 1 week, 3 days ago

    Ischemic steal syndrome (ISS) secondary to an arteriovenous fistula (AVF) in the lower extremity (LE) is a rare occurrence. Herein, we report a case of symptomatic ISS in an adult male due to an iatrogenic AVF in the left LE, which was surgically repaired by placing an arterial stent across the acquired AVF of the peroneal artery to the peroneal vein.Water diffusion anisotropy in the human brain is affected by disease, trauma, and development. Microscopic fractional anisotropy (μFA) is a diffusion MRI (dMRI) metric that can quantify water diffusion anisotropy independent of neuron fiber orientation dispersion. However, there are several different techniques to estimate μFA and few have demonstrated full brain imaging capabilities within clinically viable scan times and resolutions. Here, we present an optimized spherical tensor encoding (STE) technique to acquire μFA directly from the 2nd order cumulant expansion of the powder averaged dMRI signal obtained from direct linear regression (i.e. diffusion kurtosis) which requires fewer powder-averaged signals than other STE fitting techniques and can be rapidly computed. We found that the optimal dMRI parameters for white matter μFA imaging were a maximum b-value of 2000 s/mm2 and a ratio of STE to LTE tensor encoded acquisitions of 1.7 for our system specifications. learn more We then compared two implementations of the direct regression approach to the well-established gamma model in 4 healthy volunteers on a 3 Tesla system. One implementation used mean diffusivity (D) obtained from a 2nd order fit of the cumulant expansion, while the other used a linear estimation of D from the low b-values. Both implementations of the direct regression approach showed strong linear correlations with the gamma model (ρ = 0.97 and ρ = 0.90) but mean biases of -0.11 and – 0.02 relative to the gamma model were also observed, respectively. All three μFA measurements showed good test-retest reliability (ρ ≥ 0.79 and bias = 0). To demonstrate the potential scan time advantage of the direct approach, 2 mm isotropic resolution μFA was demonstrated over a 10 cm slab using a subsampled data set with fewer powder-averaged signals that would correspond to a 3.3-min scan. Accordingly, our results introduce an optimization procedure that has enabled nearly full brain μFA in only several minutes.

    The development of ultrashort echo time (UTE) MRI sequences has led to improved imaging of tissues with short T

    relaxation times, such as the deep layer cartilage and meniscus. UTE combined with adiabatic T

    preparation (UTE-Adiab-T

    ) is an MRI measure with low sensitivity to the magic angle effect. This study aimed to investigate the sensitivity of UTE-Adiab-T

    to mechanical load-induced deformations in the tibiofemoral cartilage and meniscus of human cadaveric knee joints.

    Eight knee joints from young (42±12years at death) donors were evaluated on a 3T scanner using the UTE-Adiab-T

    sequence under four sequential loading conditions load=0N (Load0), load=300N (Load1), load=500N (Load2), and load=0N (Unload). UTE-Adiab-T

    was measured in the meniscus (M), femoral articular cartilage (FAC), tibial articular cartilage (TAC), articular cartilage regions uncovered by meniscus (AC-UC), and articular cartilage regions covered by meniscus (AC-MC) within region of interests (ROIs) manually selected by an e reduction by loading is likely an indication of tissue deformation, the increase of UTE-Adiab-T1ρ within a lower range by unloading implies partial tissue restoration. This study highlights the UTE-Adiab-T1ρ technique as an imaging marker of tissue function for detecting deformation patterns under loading.

    Si-Miao-Yong-An decoction (SMYAD) is a renowned traditional Chinese medicinal formula. SMYAD was originally recorded in the “Shi Shi Mi Lu”, which was edited by medical scientist Chen Shi’duo during the Qing Dynasty. SMYAD has been traditionally used to treat thromboangiitis obliterans. At present, it is mainly used in clinical applications and research of cardiovascular diseases.

    To explore the effects of SMYAD on the pathological changes of atherosclerosis (AS) and the differentiation of monocytes, macrophages, and regulatory T (Treg) cells in apolipoprotein E knockout (ApoE

    ) mice.

    Eight C57BL/6J mice, which were fed with normal diet for 16 weeks, were used as control group. Forty ApoE

    mice were randomly divided into model group, atorvastatin group, SMYAD low-dose (SMYAD-LD) group, SMYAD medium-dose (SMYAD-MD) group, and SMYAD high-dose (SMYAD-HD) group. ApoE

    mice were fed with western diet (WD) for 8 weeks, and the drugs were continuously administered for 8 weeks. The levels of serum total cholmmatory factors.

    SMYAD can improve the pathological changes associated with AS and can inhibit lipid deposition in ApoE-/- mice induced by WD diet. The likely mechanism is the inhibition of the differentiation and recruitment of monocytes and macrophages, the promotion of the differentiation and recruitment of Treg cells, as well as the reduction of the secretion of pro-inflammatory factors.

    In traditional Chinese medicine (TCM) and modern pharmacodynamics, dried Rehmannia Radix (DRR) possesses prominent anti-thrombotic activity that decreases after processing by nine steaming and drying cycles to develop processed Rehmannia Radix (PRR). Due to the complexity of the DRR components, the chemical mechanism leading to efficacy changes of DRR caused by processing is still unclear.

    This study aimed to trace the anti-thrombotic active compounds of DRR and different degrees of processed RR (PRR) and to evaluate the synergistic effects among different active components.

    The anti-thrombotic active chemical fraction of DRR extracts was evaluated. Targeted fractions of the processed products of RR were prepared at different processing stages. The changes in monosaccharides, oligosaccharides and secondary metabolites during processing were characterized by multidimensional high-performance liquid chromatography (HPLC). The anti-thrombotic effects of targeted fractions of different RR samples were evaluccharide components of stachyose, raffinose and sucrose, iridoid glycosides components of catalpol, leonuride and melittoside. The two kinds of components exert synergistic anti-thrombotic effects by inhibiting the expression of inflammatory factors and regulating the balance of the fibrinolysis system.

    The main material basis of the anti-thrombotic activities of DRR is oligosaccharide components of stachyose, raffinose and sucrose, iridoid glycosides components of catalpol, leonuride and melittoside. The two kinds of components exert synergistic anti-thrombotic effects by inhibiting the expression of inflammatory factors and regulating the balance of the fibrinolysis system.