• Mcgowan Whitaker posted an update 5 days, 11 hours ago

    The fruit of Prunus mume (PM) is widely cultivated in East Asia, and it has been used as a folk medication for gastrointestinal disorders, e.g., diarrhea, stomach ache and ulceration. In this study, the pectinase-treated PM juice (PJ) was fermented with Lactobacillus strains containing fundamental organic acids and free amino acids. The PJ fermented with Lactobacillus plantarum and L. casei (FP) was investigated for its protective effect in dextran sodium sulfate (DSS)-induced colitis mice model. The administration of FP reduced lipid peroxidation and histopathological colitis symptoms, e.g., shortening of the colon length, depletion of mucin, epithelial injury and ulceration, in colonic tissues. The FP-supplemented group showed the alleviation of pro-inflammatory cytokines. Compared with the DSS control group, the supplementation of FP significantly reduced the levels of serum interferon-γ (IFN-γ), interleukin (IL)-1β, IL-6, IL-12 and IL-17 as well as colonic tumor necrosis factor-α, IFN-γ, IL-12 and IL-17. Furthermore, the DSS-induced TUNEL-positive area was significantly reduced by the FP supplementation. These results show that the supplementation of FP fermented with mixed lactic acid bacteria, L. plantarum and L. casei, elucidated the protective effect in DSS-induced colitis mice. Hence, this study suggests that FP can be utilized as a natural therapeutic agent for colitis and intestinal inflammation.The domestic silkworm Bombyx mori is extensively studied as a model organism for lepidopteran genetics and has an economic value in silk production. Silkworms also have applications in biomedical and cosmetic industries, and the production of mutant B. mori strains significantly enhances basic and applied silkworm research. In recent years, CRISPR/Cas9 technology is being rapidly adopted as the most efficient molecular tool for generating silkworm lines carrying mutations in target genes. Here we illustrate a complete and efficient workflow to screen, characterize rapidly and follow mutations through generations, allowing the generation of B. mori lines, stably inheriting single CRISPR/Cas9-induced mutations. This approach relies on the use of different molecular methods, the heteroduplex assay, cloning followed by Sanger sequencing, and the amplification refractory mutation system PCR. The use of these methodologies in a sequential combination allows the identification of CRISPR/Cas9-induced mutations in genes mapping on both autosomes and sex chromosomes, and the selection of appropriate individuals to found stable mutant B. mori lines. This protocol could be further applied to screen CRISPR/Cas9 mutations in haploid insects.This work combines experimental and numerical (computational fluid dynamics) data to better understand the kinetics of the dispersion of graphite nanoplates in a polypropylene melt, using a mixing device that consists of a series of stacked rings with an equal outer diameter and alternating larger and smaller inner diameters, thereby creating a series of converging/diverging flows. Numerical simulation of the flow assuming both inelastic and viscoelastic responses predicted the velocity, streamlines, flow type and shear and normal stress fields for the mixer. Experimental and computed data were combined to determine the trade-off between the local degree of dispersion of the PP/GnP nanocomposite, measured as area ratio, and the absolute average value of the hydrodynamic stresses multiplied by the local cumulative residence time. A strong quasi-linear relationship between the evolution of dispersion measured experimentally and the computational data was obtained. Theory was used to interpret experimental data, and the results obtained confirmed the hypotheses previously put forward by various authors that the dispersion of solid agglomerates requires not only sufficiently high hydrodynamic stresses, but also that these act during sufficient time. Based on these considerations, it was estimated that the cohesive strength of the GnP agglomerates is in the range of 5-50 kPa.The aim of this study was to identify social, cultural and workplace-related risk factors affecting well-being among Latina farmworkers in rural Idaho. We recruited 70 Latina farmworkers from southwestern Idaho in 2019. We employed an inter-disciplinary, mixed-methods approach-including surveys, focus groups, interviews, and pesticide biomonitoring-to characterize multiple domains that influence well-being, including food security and access, housing conditions, social supports, access to medical care, and workplace safety. Six major themes emerged as primary challenges to Latina farmworkers’ well-being. In the public sphere, study participants identified these challenges as long working hours, concerns regarding pesticide exposure, and lack of enforcement of regulatory protections. selleck kinase inhibitor Participants’ concerns regarding pesticide exposure were underscored by biological sampling results; multiple biomarkers of pesticide exposure were detected in all samples, with the highest concentrations measured in samples collected from women who reported mixing, loading or applying pesticides. Within the private sphere, food security and provisioning, childcare responsibilities, and social isolation were identified as significant challenges to well-being. Gender, ethnicity, and geography emerged as important, intersecting statuses that shaped the life experiences of these agricultural workers. Our findings suggest that gender may play a particularly critical role in the unique challenges facing Latina farmworkers. As a result, the services and regulations needed to support well-being in this population may be highly specific, and almost certainly include attention to work-family dynamics, pesticide exposure, and social connections.The present investigation intended to evaluate the bacteriostatic and bactericidal abilities of clove, oregano and thyme essential oils against oral bacteria in planktonic and biofilm states. Furthermore, aiming to mimic everyday conditions, a toothbrush in vitro model was developed. Determination of the minimum inhibitory concentration, minimum bactericidal concentration, minimum biofilm inhibitory concentration and minimum biofilm eradication concentration were achieved using the microdilution procedure. To simulate the toothbrush environment, nylon fibers were inoculated with oral bacteria, which, after incubation to allow biofilm development, were submitted to contact with the essential oils under study. Thyme and oregano essential oils revealed promising antimicrobial effects, both in growth inhibition and the destruction of cells in planktonic and biofilm states, while clove essential oil showed a weaker potential. Regarding the toothbrush in vitro model, observation of the nylon fibers under a magnifying glass proved the essential oil anti-biofilm properties.