-
Mcgowan Whitaker posted an update 2 days, 11 hours ago
During locomotion, theta and gamma rhythms are essential to ensure timely communication between brain structures. However, their metabolic cost and contribution to neuroimaging signals remain elusive. To finely characterize neurovascular interactions during locomotion, we simultaneously recorded mesoscale brain hemodynamics using functional ultrasound (fUS) and local field potentials (LFP) in numerous brain structures of freely-running overtrained rats. Locomotion events were reliably followed by a surge in blood flow in a sequence involving the retrosplenial cortex, dorsal thalamus, dentate gyrus and CA regions successively, with delays ranging from 0.8 to 1.6 seconds after peak speed. Conversely, primary motor cortex was suppressed and subsequently recruited during reward uptake. Surprisingly, brain hemodynamics were strongly modulated across trials within the same recording session; cortical blood flow sharply decreased after 10-20 runs, while hippocampal responses strongly and linearly increased, particularly in the CA regions. This effect occurred while running speed and theta activity remained constant and was accompanied by an increase in the power of hippocampal, but not cortical, high-frequency oscillations (100-150 Hz). Our findings reveal distinct vascular subnetworks modulated across fast and slow timescales and suggest strong hemodynamic adaptation, despite the repetition of a stereotyped behavior.As of 1st June 2020, the US Centres for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly model the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We use changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2. We estimate that Rt was only below one in 23 states on 1st June. We also estimate that 3.7% [3.4%-4.0%] of the total population of the US had been infected, with wide variation between states, and approximately 0.01% of the population was infectious. We demonstrate good 3 week model forecasts of deaths with low error and good coverage of our credible intervals.Allergic rhinitis (AR) is caused by immunoglobulin E (IgE)-mediated reactions to inhaled allergens and is one of the most common chronic conditions globally. AR often co-occurs with asthma and conjunctivitis and is a global health problem causing major burden and disability worldwide. Risk factors include inhalant and occupational allergens, as well as genetic factors. AR impairs quality of life, affects social life, school and work, and is associated with substantial economic costs. The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative classified AR into intermittent or persistent and mild or moderate/severe. The diagnosis is based on the clinical history and, if needed in patients with uncontrolled rhinitis despite medications or with long-lasting symptoms, on skin tests or the presence of serum-specific IgE antibodies to allergens. The most frequently used pharmacological treatments include oral, intranasal or ocular H1-antihistamines, intranasal corticosteroids or a fixed combination of intranasal H1-antihistamines and corticosteroids. Allergen immunotherapy prescribed by a specialist using high-quality extracts in stratified patients is effective in patients with persistent symptoms. Real-world data obtained by mobile technology offer new insights into AR phenotypes and management. The outlook for AR includes a better understanding of novel multimorbid phenotypes, health technology assessment and patient-centred shared decision-making.Pulses of tree mortality caused by drought have been reported recently in forests around the globe, but large-scale quantitative evidence is lacking for Europe. Analyzing high-resolution annual satellite-based canopy mortality maps from 1987 to 2016 we here show that excess forest mortality (i.e., canopy mortality exceeding the long-term mortality trend) is significantly related to drought across continental Europe. The relationship between water availability and mortality showed threshold behavior, with excess mortality increasing steeply when the integrated climatic water balance from March to July fell below -1.6 standard deviations of its long-term average. For -3.0 standard deviations the probability of excess canopy mortality was 91.6% (83.8-97.5%). Overall, drought caused approximately 500,000 ha of excess forest mortality between 1987 and 2016 in Europe. We here provide evidence that drought is an important driver of tree mortality at the continental scale, and suggest that a future increase in drought could trigger widespread tree mortality in Europe.Past changes in ocean 14C disequilibria have been suggested to reflect the Southern Ocean control on global exogenic carbon cycling. Yet, the volumetric extent of the glacial carbon pool and the deglacial mechanisms contributing to release remineralized carbon, particularly from regions with enhanced mixing today, remain insufficiently constrained. Here, we reconstruct the deglacial ventilation history of the South Indian upwelling hotspot near Kerguelen Island, using high-resolution 14C-dating of smaller-than-conventional foraminiferal samples and multi-proxy deep-ocean oxygen estimates. We find marked regional differences in Southern Ocean overturning with distinct South Indian fingerprints on (early de-)glacial atmospheric CO2 change. Nec-1s nmr The dissipation of this heterogeneity commenced 14.6 kyr ago, signaling the onset of modern-like, strong South Indian Ocean upwelling, likely promoted by rejuvenated Atlantic overturning. Our findings highlight the South Indian Ocean’s capacity to influence atmospheric CO2 levels and amplify the impacts of inter-hemispheric climate variability on global carbon cycling within centuries and millennia.