• Munro William posted an update 15 hours, 14 minutes ago

    Two organometallic compounds known as (E)-1-ferrocenyl-(3-fluorophenyl)prop-2-en-1-one (Fc1) and (E)-1-ferrocenyl-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one (Fc2) are designed and synthesized for application in dye-sensitized solar cell (DSSC) based on a donor-π-acceptor (D-π-A) architecture. By strategically introducing a methoxy group into the acceptor side of the compound, Fc2 which has adopted a D-π-A-AD structure are compared with the basic D-π-A structure of Fc1. Both compounds were characterized by utilizing the IR, NMR and UV-Vis methods. Target compounds were further investigated by X-ray analysis and studied computationally using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) approaches to explore their potential performances in DSSCs. An additional methoxy group has been proven in enhancing intramolecular charge transfer (ICT) by improving the planarity of Fc2 backbone. This good electronic communication leads to higher HOMO energy level, larger dipole moment and better short-circuit current density (Jsc) values. Eventually, the presence of methoxy group in Fc2 has improved the conversion efficiency as in comparison to Fc1 under the same conditions.The current study aimed to understand psychosocial and economic impacts of female caregivers and families caring for children with a disability in Belu district, Indonesia. A qualitative inquiry employing one-on-one in-depth interviews was used to collect data from participants (n = 22). Data analysis was guided by a framework analysis for qualitative research. Social implications framework and the economic consequence of disease and injury framework were used to guide the conceptualisation, analysis and discussion of the findings. Findings indicated that female caregivers of children with a disability experienced significant psychosocial challenges. Selleckchem MLN4924 These included feeling frustrated, sad, angry, worried, inferior and insecure due to rejection of their children by other kids with no disability. Poor physical conditions of and negative labelling given to their children and the fear of what the future held for their children with a disability added yet another layer of psychosocial challenges experienced by these women. Separation or divorce and reduced social interaction and engagement in the community were expressed social impact loaded to these women resulting from poor acceptability of the children by their fathers, increased time spent caring and discriminatory and stigmatising attitudes against their children with a disability. The participants also experienced economic impacts, such as increased health and transport expenses, loss of jobs and productivity, and lack of savings. The findings indicate the need for programs and interventions addressing the needs of mothers or female caregivers and families with disabled children. Further studies with large number of participants covering mothers, fathers and caregivers to understand broader experiences and the need of caring for children with a disability are recommended.Morbidity and mortality impacts of extreme heat amplified by climate change will be unequally distributed among communities given pre-existing differences in socioeconomic, health, and environmental conditions. Many governments are interested in adaptation policies that target those especially vulnerable to the risks, but there are important questions about how to effectively identify and support communities most in need of heat adaptations. Here, we use an equity-oriented adaptation program from the state of California as a case study to evaluate the implications of the currently used environmental justice index (CalEnviroScreen 3.0) for the identification of socially vulnerable communities with climate change adaptation needs. As CalEnviroScreen is geared towards air and water pollution, we assess how community heat risks and adaptation needs would be evaluated differently under two more adaptation-relevant vulnerability indices the Social Vulnerability Index and the Heat-Health Action Index. Our analysis cd opportunities in quantifying vulnerability.

    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates intraocular pressure (IOP) by altering extracellular matrix (ECM) homeostasis within the trabecular meshwork (TM). We hypothesized that the lower IOP previously observed in SPARC -/- mice is due to a greater outflow facility.

    Mouse outflow facility (Clive) was determined by multiple flow rate infusion, and episcleral venous pressure (Pe) was estimated by manometry. The animals were then euthanized, eliminating aqueous formation rate (Fin) and Pe. The C value was determined again (Cdead) while Fin was reduced to zero. Additional mice were euthanized for immunohistochemistry to analyze ECM components of the TM.

    The Clive and Cdead of SPARC -/- mice were 0.014 ± 0.002 μL/min/mmHg and 0.015 ± 0.002 μL/min/mmHg, respectively (p = 0.376, N/S). Compared to the Clive = 0.010 ± 0.002 μL/min/mmHg and Cdead = 0.011 ± 0.002 μL/min/mmHg in the WT mice (p = 0.548, N/S), the Clive and Cdead values for the SPARC -/- mice were higher. Pe values were estimated to be 8.0 ± 0.2 mmHg and 8.3 ± 0.7 mmHg in SPARC -/- and WT mice, respectively (p = 0.304, N/S). Uveoscleral outflow (Fu) was 0.019 ± 0.007 μL/min and 0.022 ± 0.006 μL/min for SPARC -/- and WT mice, respectively (p = 0.561, N/S). Fin was 0.114 ± 0.002 μL/min and 0.120 ± 0.016 μL/min for SPARC -/- and WT mice (p = 0.591, N/S). Immunohistochemistry demonstrated decreases of collagen types IV and VI, fibronectin, laminin, PAI-1, and tenascin-C within the TM of SPARC -/- mice (p < 0.05).

    The lower IOP of SPARC -/- mice is due to greater aqueous humor outflow facility through the conventional pathway. Corresponding changes in several matricellular proteins and ECM structural components were noted in the TM of SPARC -/- mice.

    The lower IOP of SPARC -/- mice is due to greater aqueous humor outflow facility through the conventional pathway. Corresponding changes in several matricellular proteins and ECM structural components were noted in the TM of SPARC -/- mice.