• Finnegan Spears posted an update 1 week ago

    Laurus nobilis L. (laurel, Lauraceae) and Prunus armeniaca L. (apricot, Rosaceae) are important industrial crops and display significant biological properties, including antimicrobial activity. In this work, essential oils (EOs) prepared from the leaves of both species from Morocco were evaluated for the first time for possible synergistic in vitro antibacterial and antifungal effects with some conventional antimicrobial drugs, namely fluconazole, ciprofloxacin and vancomycin. Samples were further evaluated for chemical composition by gas chromatography-mass spectrometry (GC-MS). The main volatile compounds detected in L. nobilis were eucalyptol (40.85%), α-terpinyl acetate (12.64%) and methyl eugenol (8.72%), while P. armeniaca was dominated essentially by (Z)-phytol (27.18%), pentacosane (15.11%), nonacosane (8.76%) and benzaldehyde (7.25%). Regarding antimicrobial activity, both EOs inhibited significantly all the microorganisms tested. The EO from L. nobilis had the highest activity, with minimal inhibitory concentrations (MICs) ranging from 1.39 to 22.2 mg/mL for bacteria and between 2.77 and 5.55 mg/mL for yeasts. Conversely, the combination of the studied EOs with ciprofloxacin, vancomycin and fluconazol resulted in a noteworthy decrease in their individual MICs. In fact, of the 32 interactions tested, 23 (71.87%) demonstrated total synergism and 9 (28.12%) a partial synergistic interaction. The EO from L. nobilis exhibited the highest synergistic effect with all the antibiotics used, with fractional inhibitory concentration (FIC) index values in the range of 0.266 to 0.75 for bacteria, and between 0.258 and 0.266 for yeast. The synergistic interaction between the studied EOs and standard antibiotics may constitute promising anti-infective agents useful for treating diseases induced by antibiotic-resistant pathogens.Members of the Actinomyces genus are non-spore-forming, anaerobic, and aerotolerant Gram-positive bacteria that are abundantly found in the oropharynx. They are the causative agents of actinomycosis, a slowly progressing (indolent) infection with non-specific symptoms in its initial phase, and a clinical course of extensive tissue destruction if left untreated. Actinomycoses are considered to be rare; however, reliable epidemiological data on their prevalence is lacking. Herein, we describe two representative and contrasting cases of cervicofacial actinomycosis, where the affected patients had distinctively different backgrounds and medical histories. Identification of the relevant isolates was carried out using matrix-assisted laser desorption/ionization mass spectrometry; antimicrobial susceptibility was performed using E-tests. Cervicofacial actinomycoses are the most frequent form of the disease; isolation and identification of these microorganisms from relevant clinical samples (with or without histological examination) is the gold standard for diagnosis. The therapy of these infections includes surgical debridement and antibiotic therapy, mainly with a penicillin-derivative or clindamycin.Selenium (Se) is considered essential for human nutrition as it is involved in the metabolic pathway of selenoproteins and relevant biological functions. Microgreens, defined as tender immature greens, constitute an emerging functional food characterized by overall higher levels of phytonutrients than their mature counterparts. The nutraceutical value of microgreens can be further improved through Se biofortification, delivering Se-enriched foods and potentially an enhanced content of bioactive compounds. The current study defined the effect of sodium selenate applications at three concentrations (0, 8, and 16 μM Se) on the bioactive compounds and mineral content of coriander, green basil, purple basil, and tatsoi microgreens grown in soilless cultivation. Analytical emphasis was dedicated to the identification and quantification of polyphenols by UHPLC-Q-Orbitrap-HRMS, major carotenoids by HPLC-DAD, and macro micro-minerals by ICP-OES. Twenty-seven phenolic compounds were quantified, of which the most abundaited an increase in the Se content in response to the biofortification treatments, thereby satisfying the recommended daily allowance for Se (RDA-Se) from 20% to 133%. The optimal Se dose that guarantees the effectiveness of Se biofortification and improves the content of bioactive compounds was 16 μM in coriander and tatsoi, and 8 μM in green and purple basil.PURPOSE Cataracts are a major cause of visual acuity deterioration in diabetes mellitus (DM) in developed and developing countries. Studies have demonstrated that overproduction of AKR1B1 and receptor for advanced glycation end products (RAGE) plays a major role in the pathogenesis of diabetic cataracts, but it is unclear whether the prevalence of diabetic cataracts is related to epithelial-mesenchymal transition (EMT) in lens epithelial cells. This study aimed to analyze the role of EMT in cataract formation of DM patients. METHODS Immunofluorescence and immunohistochemistry assays were used to estimate AKR1B1, RAGE, AMPK, and EMT levels in epithelial human lens of DM or non-DM cataracts. RESULTS Immunohistochemical staining demonstrated that pathologic phases and N-cadherin expression levels were significantly higher in epithelial human lens of DM (+) compared to DM (-) cataracts. Immunofluorescent staining showed that AKR1B1 and RAGE were significantly higher in epithelial human lens of DM (+) compared to DM (-) cataracts. Interestingly, acetyl superoxide dismutase 2 (AcSOD2) levels were significantly higher in DM patients’ lens epithelial cells (LECs), whereas AMPKT172 phosphorylation was significantly increased in non-DM patients. This indicates that AMPKT172 might be related to superoxide reduction and diabetic cataract formation. CONCLUSIONS Our results suggest that AKR1B1 overexpression can decrease AMPK activation, thereby increasing AcSOD2 and RAGE-induced EMT in epithelial human lens of DM cataracts. These novel findings suggest that AKR inhibitors may be candidates for the pharmacological prevention of cataracts in patients with DM.During its first two and a half months, the recently emerged 2019 novel coronavirus, SARS-CoV-2, has already infected over one-hundred thousand people worldwide and has taken more than four thousand lives. However, the swiftly spreading virus also caused an unprecedentedly rapid response from the research community facing the unknown health challenge of potentially enormous proportions. Unfortunately, the experimental research to understand the molecular mechanisms behind the viral infection and to design a vaccine or antivirals is costly and takes months to develop. To expedite the advancement of our knowledge, we leveraged data about the related coronaviruses that is readily available in public databases and integrated these data into a single computational pipeline. As a result, we provide comprehensive structural genomics and interactomics roadmaps of SARS-CoV-2 and use this information to infer the possible functional differences and similarities with the related SARS coronavirus. All data are made publicly available to the research community.In this paper, we present an approach to assess the schedulability and scalability of CPS Networks through an algorithm that is capable of estimating the load of the network as its utility grows. Our approach evaluates both the network load and the laxity of messages, considering its current topology and real-time constraints while abstracting environmental specificities. The proposed algorithm also accounts for the network unreliability by applying a margin-of-safety parameter. This approach enables higher utilities as it evaluates the load of the network considering a margin-of-safety that encapsulates phenomena such as collisions and interference, instead of performing a worst-case analysis. Furthermore, we present an evaluation of the proposed algorithm over three representative scenarios showing that the algorithm was able to successfully assess the network capacity as it reaches a higher use.Blood contains a diverse cell population of low concentration hematopoietic as well as non-hematopoietic cells. The majority of such rare cells may be bone marrow-derived progenitor and stem cells. selleck chemicals llc This paucity of circulating rare cells, in particular in the peripheral circulation, has led many to believe that bone marrow as well as other organ-related cell egress into the circulation is a response to pathological conditions. Little is known about this, though an increasing body of literature can be found suggesting commonness of certain rare cell types in the peripheral blood under physiological conditions. Thus, the isolation and detection of circulating rare cells appears to be merely a technological problem. Knowledge about rare cell types that may circulate the blood stream will help to advance the field of cell-based liquid biopsy by supporting inter-platform comparability, making use of biological correct cutoffs and “mining” new biomarkers and combinations thereof in clinical diagnosis and therapy. Therefore, this review intends to lay ground for a comprehensive analysis of the peripheral blood rare cell population given the necessity to target a broader range of cell types for improved biomarker performance in cell-based liquid biopsy.A real-time electric nose (E-nose) with a metal oxide sensor (MOS) array was developed to monitor 5 highly flammable liquids (ethanol, tetrahydrofuran, turpentine, lacquer thinner, and gasoline) in this work. We found that temperature had a significant impact on the test results and temperature control could efficiently improve the performance of our E-nose. The results of our qualitative analysis showed that principal component analysis (PCA) could not efficiently distinguish these samples compared to a back-propagation artificial neural network (BP-ANN) which had a 100% accuracy rate on the test samples. Quantitative analysis was performed by regression analysis and the average errors were 9.1%-18.4%. In addition, through anti-interference training, the E-nose could filter out the potential false alarm caused by mosquito repellent, perfume and hair jelly.Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy and sleep disordered breathing (SDB) is a treatable risk factor that has been seen to occur concurrently, and is known to propagate mortality and morbidity in a number of cardiovascular disease states including heart failure, and indeed hypertrophic cardiomyopathy. In this review, we summarize past studies that explored the simultaneous occurrence of HCM and SDB, and the pathophysiology of SDB in relation to heart failure, arrhythmias, cardiac ischemia and pulmonary hypertension in HCM. The current therapeutic modalities, with the effect of obstructive sleep apnea (OSA) treatment on HCM, are then discussed along with potential future directions.Rabies is a zoonotic neurological infection caused by lyssavirus that continues to result in devastating loss of human life. Many aspects of rabies pathogenesis in human neurons are not well understood. Lack of appropriate ex-vivo models for studying rabies infection in human neurons has contributed to this knowledge gap. In this study, we utilize advances in stem cell technology to characterize rabies infection in human stem cell-derived neurons. We show key cellular features of rabies infection in our human neural cultures, including upregulation of inflammatory chemokines, lack of neuronal apoptosis, and axonal transmission of viruses in neuronal networks. In addition, we highlight specific differences in cellular pathogenesis between laboratory-adapted and field strain lyssavirus. This study therefore defines the first stem cell-derived ex-vivo model system to study rabies pathogenesis in human neurons. This new model system demonstrates the potential for enabling an increased understanding of molecular mechanisms in human rabies, which could lead to improved control methods.